Deconfinement phase transition with heavy quarks

Pok Man Lo *GSI NeD & TURIC* 9-June 2014, Hersonissos, Crete, Greece

pmlo@gsi.de

In collaboration with...

Bengt Friman (*GSI*) Chihiro Sasaki (*FIAS*) Krzysztof Redlich (*U. of Wroclaw*) Olaf Kaczmarek (*U. of Bielefeld*)

Content

Deconfinement phase transition with heavy quarks

- Effective theory for PL coupled with heavy quarks
- Critical quark mass and phase boundary
- Quark mass dependence of transition temperature

Deconfinement phase transition

Polyakov loop

• Order parameter **characterizes** the state of the system

Operator does **not** respect the symmetry

< L >

$$L \to L e^{i2n\pi/3}$$

confined phase: < L >= 0deconfined phase: $< L >\neq 0$

Polyakov loop susceptibilities

• *L* is complex-valued for SU(3)

real sector: $\chi_L = V(\langle L_L L_L \rangle - \langle L_L \rangle^2)$ $\chi_T = V(\langle L_T L_T \rangle - \langle L_T \rangle^2)$

- Sensitive to the transition of phases features peak and width near the transition
- Effective potential: inverse of curvature

Polyakov Loop Eff. Potential

 \overline{U}_C

Construction of PL effective model

PL-heavy quark coupling

• Fermionic determinant

$$Z = \int DL D\bar{L} \,\det[\hat{Q}_F] \,e^{-\beta V U_G[L,\bar{L}]}.$$

• Background field approach

$$\hat{Q}_F = (-\partial_\tau + \mu + igA_4)\gamma^0 + i\vec{\gamma}\cdot\nabla - M_Q$$
$$\hat{L} = e^{i\beta gA_4^a T^a}$$

$$L = \frac{1}{N_c} T r_c \hat{L}$$

PL-heavy quark coupling

• Fermionic determinant (1 loop)

$$\ln \det[\hat{Q}_F] = V2N_f \int \frac{d^3k}{(2\pi)^3} [3\beta E[k] + \ln g^+ + \ln g^-]$$

$$g^{\pm} = 1 + 3 \begin{pmatrix} L \\ \bar{L} \end{pmatrix} e^{-\beta E^{\pm}} + 3 \begin{pmatrix} \bar{L} \\ L \end{pmatrix} e^{-2\beta E^{\pm}} + e^{-3\beta E^{\pm}}$$
$$E^{\pm} = E[k] \pm \mu$$

 $E[k] = (k^2 + M_Q^2)^{1/2}$

Sasaki et al. Phys.Rev. D75 (2007) 074013

PL-heavy quark coupling

• Effective potential

 $\ln \det[\hat{Q}_F] = -VT^3 \bar{U}_Q[L, \bar{L}; M_Q]$

• Heavy quark limit $(M_Q/T \gg 1)$

$$\begin{split} \bar{U}_Q[L,\bar{L};M_Q] &\approx -h_{\rm eff}[M_Q/T]\,L_{\rm L} + \dots \\ \bar{U}_G \longrightarrow \bar{U}_G - h_{\rm eff}L_{\rm L} \\ h_{\rm eff}[M_Q/T;N_f] &= \frac{6N_f}{\pi^2 T^3}\int dk\,k^2 e^{-\beta\sqrt{k^2+M_Q^2}} \\ h_{\rm eff} \to 0 \quad \text{as} \quad M_Q/T \to \infty \end{split}$$

Critical quark mass

• Phase boundary of deconfinement phase transition

Critical quark mass

• Critical end point results from effective potential

Critical quark mass

• N_f dependence of critical quark mass

$$h_{\rm eff}[M_Q/T;N_f] = \frac{6N_f}{\pi^2 T^3} \int dk \, k^2 e^{-\beta \sqrt{k^2 + M_Q^2}}$$

$$h_{eff}[M_Q/T; N_f] = h_c$$
 \longrightarrow Deconfining CEP

 $\mathbf{h}_{eff} \uparrow N_f \uparrow$ $\mathbf{h}_{eff} \downarrow M_Q \uparrow$

$$m_{CEP}^{N_f=3} > m_{CEP}^{N_f=2} > m_{CEP}^{N_f=1}$$

$$\kappa_c^{N_f=3} < \kappa_c^{N_f=2} < \kappa_c^{N_f=1}$$

WHOT-QCD Collaboration (Saito, H. et al.)

 $< L > [T, M_Q]$

F. Karsch, Lattice QCD at high temperature and density

Heavy quark scale

• Typical heavy quarkonium mass scale:

 ${
m m}_{c} = 1.3 \,{
m GeV}$ ${
m m}_{J/\psi} = 3.097 \,{
m GeV}$ ${
m m}_{\eta_{c}} = 2.98 \,{
m GeV}$ ${
m m}_{PS}/m_{V} = 0.96$ $m_b = 4.2 \,\text{GeV}$ $m_{\Upsilon} = 9.460 \,\text{GeV}$ $m_{\eta_b} = 9.391 \,\text{GeV}$ $m_{PS}/m_V = 0.99$

Model dependence of CEP

- Current model: $m_{CEP}^{N_f=3} \approx 1.48 \,\text{GeV}$ $T_{CEP} \approx 0.26 \,\text{GeV}$
- Matrix model:

 $m_{CEP}^{N_f=3} \approx 2.5 \,\text{GeV}$ $T_{CEP} \approx 0.27 \,\text{GeV}$

Critical quark mass at finite density

• Phase boundary of deconfinement phase transition

Summary of part 1

- *X*L is strongly enhanced in the critical region
 → probe the location of CEP
- Deconfining CEP: $m_{CEP}^{N_f=3} \approx 1.48 \,\text{GeV}$
 - lattice estimate: $\approx 1 1.5 \,\mathrm{GeV}$
 - $T_{CEP} \approx 0.26 \, GeV$

Summary of part 1

• $m_{\rm CEP}$ increases with μ

first order region shrinks!

• Results of the CEP are model dependent

mandatory to take fluctuations of order parameter into account in constructing the effective potential Studying QCD medium with Polyakov loop correlators

Polyakov line correlators

 The Polyakov loop susceptibilities can be understood as integrated correlation functions

$$\mathcal{L}_{\vec{x}} = < \frac{1}{N_c} Tr \mathcal{P}e^{ig \int_0^\beta d\tau A^4[\tau, \vec{x}]} >$$

 $\chi_{\rm L} = \int d^3x \, \langle L_{\rm L}(x) L_{\rm L}(0) \rangle_c$ $\chi_{\rm T} = \int d^3x \, \langle L_{\rm T}(x) L_{\rm T}(0) \rangle_c$

P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, Phys. Rev. D 88, 074502 (2013)

Polyakov line correlators

• Below T_c , from Z(3) symmetry

$$\longrightarrow \chi_{\rm T}/\chi_{\rm L} = 1$$

$$\langle LL \rangle = 0 = \langle L_{\rm L}L_{\rm L} \rangle - \langle L_{\rm T}L_{\rm T} \rangle$$

• Above T_c , Z(3) is spontaneously broken

 $\longrightarrow \chi_{\mathrm{T}} \neq \chi_{\mathrm{L}}$

Polyakov line correlators

• Below T_c , from Z(3) symmetry

$$\longrightarrow \chi_{\rm T}/\chi_{\rm L} = 1$$

$$\langle LL \rangle = 0 = \langle L_{\rm L}L_{\rm L} \rangle - \langle L_{\rm T}L_{\rm T} \rangle$$

• Above T_c , Z(3) is spontaneously broken

$$\longrightarrow \chi_{\mathrm{T}} \neq \chi_{\mathrm{L}}$$

Magnitudes of X's reflect screening properties of QCD medium!

Screening masses of the Polyakov line correlators

• The screening masses for these gauge invariant correlators have been extracted

$$m_{L,T} = \lim_{r \to \infty} -\frac{d}{dr} \ln C_{L,T}(r)$$

Screening masses of the Polyakov line correlators

• The screening masses for these gauge invariant correlators are extracted

$$m_{L,T} = \lim_{r \to \infty} -\frac{d}{dr} \ln C_{L,T}(r)$$
?
erturbatively:
$$(L_L(x)L_L(0))_c)$$
(L_T(x)L_T(0))_c

 $\mathcal{L}_{\vec{x}} = < \frac{1}{N_c} Tr \mathcal{P}e^{ig \int_0^\beta d\tau \, A^4[\tau, \vec{x}]} >$

starts with 2 and 3 gluons exchange (S. Nadkarni, Phys. Rev. D 33, 3738 (1986))

Effective field theory: glueball exchange

Ρ

(E. Braaten and A. Nieto, Phys. Rev. Lett. 74, 3530 (1995))

$\langle L_{\rm L}(x)L_{\rm L}(0)\rangle_c$ contains the exchange of magnetic photons!

$\langle L_{\rm L}(x)L_{\rm L}(0)\rangle_c$ contains the exchange of magnetic gluons and glueballs!

Y. Maezawa et al. [WHOT-QCD Collaboration], Phys. Rev. D 81, 091501 (2010)

A. Nakamura, T. Saito and S. Sakai, Phys. Rev. D 69, 014506 (2004)

R-parity

$$A_0 \to -A_0$$

- Longitudinal PL: even, magnetic?
- Transverse PL: odd, electric?

$$m_{L,T} = \lim_{r \to \infty} -\frac{d}{dr} \ln C_{L,T}(r)$$

$$\chi_{\rm L} = \int d^3x \, \langle L_{\rm L}(x) L_{\rm L}(0) \rangle_c$$
$$\chi_{\rm T} = \int d^3x \, \langle L_{\rm T}(x) L_{\rm T}(0) \rangle_c$$

P. B. Arnold and L. G. Yaffe, Phys. Rev. D 52, 7208 (1995)

Y. Maezawa et al. [WHOT-QCD Collaboration], Phys. Rev. D 81, 091501 (2010)

R-parity

• Longitudinal PL: even, magnetic?
$$A_0 \rightarrow -A_0$$

• Transverse PL: odd, electric? –

 $\chi_{\rm L} = \int d^3x \, \langle L_{\rm L}(x) L_{\rm L}(0) \rangle_c$

 $\chi_{\rm T} = \int d^3x \, \langle L_{\rm T}(x) L_{\rm T}(0) \rangle_c$

$$m_{L,T} = \lim_{r \to \infty} -\frac{d}{dr} \ln C_{L,T}(r)$$

above T_c

$$m_{\rm T} > m_{\rm L}$$

electric screening >

magnetic screening

$$\chi_{
m T} \ll \chi_{
m L}$$

P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, Phys. Rev. D 88, 074502 (2013)

Summary of part 2

• $\chi_{L,T}$ can be understood as integrated correlation functions

$$\chi_{\rm L} = \int d^3x \, \langle L_{\rm L}(x) L_{\rm L}(0) \rangle_c$$
$$\chi_{\rm T} = \int d^3x \, \langle L_{\rm T}(x) L_{\rm T}(0) \rangle_c$$

• From R-parity

 $\chi_{\rm T} < \chi_{\rm L}$ electric screening > magnetic screening m_T > $m_{\rm L}$

Summary of part 2

• $\chi_{L,T}$ link screening properties and deconfinement

Theoretical understanding is still incomplete, perturbative study is still absent.

Thank You!