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Zubarev non equilibrium density matrix

D. N. Zubarev and M. V. Tokarchuk, Theor. Math. Phys. 88, 876 (1992).

T (z) = 0 tx(PT™) = tr(p0, TH) = 0
p density operator in Heisenberg picture

The hydrodynamical problem is to determine the evolution of the
mean values starting from LTE (local thermodinamical equilibrium)
condition at some time 1

i = oy e [— / o e (T (@) - §<x>3~<:c>)]

m Y 3d spacelike hyper-surface with normal vector n*
m (z) local four-temperature
m ¢(x) = p(x)/T(x) local chemical potential
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Non equilibrium density matrix

The stationary density matrix can be transformed using the Gauss

theorem
- /E(T;i)z ma (T4 00 =30€) = = [ gm o (T8, = 54€) 4 [ a0 (T dup, 5 due)
flux
/_/ ir
Lol
(10)

1 - -~ ~ -~
= e |- / s ny, (T“”ﬁV - ;#5) + / a0 (T’“’duﬁu — j#dug)]

2(r") Q

If the system stays close to LTE at any time, the second term is a

correction and an expansion can be made from present LTE
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Non equilibrium density matrix

The non equilibrium density matrix includes two terms
p=e'tB)Z
B A= —/ d¥ n, (f‘“’ﬁ,, —5“5) leading term local
3(

7')

equilibrium
m B= / dQ <f“”duﬁ,, —‘/]T“d;g) dissipative term
Q

We can consider the dissipative term as a perturbation and expand
the mean value of an operator (linear response):

~

. N . . T
(O(2')) = (O(2"))Le — (O(z"))Le(B)LE +/0 dz (O(z')e** Be * )1
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Linear Response theory

After standard manipulations

(OGN~ s =T [ dta [0 (10w, 70,00 5 2,8.()

Define 63 = B(x) — Beq in the hydro limit, this perturbation varies
on a scale much larger than the operators correlation length, thus
only the smallest Fourier component can be retained

i(e—iK‘(x—w’) - eiK~(a:—a:’))

0By (x) ~ A, 5

and after some manipulation..

~ d 0 ~ ~ .
AN 4 ! 0% —ik-y
HOW) = 0,8ula') 3| _ Jim T iT [ aty (). T ()]} re
the well known Kubo formula for the first order transport

coefficients.

A. Hosoya, M. -a. Sakagami and M. Takao, Annals Phys. 154, 229 (1984).
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Local equilibrium mean values

To compute the LTE mean value for an operator at some point

(O(")LE

~ Lo - / s n, (Tﬂ”ﬁy—%g)
(O@@"))LE = 7ot O(z)e /=)

The mean value at LE can be approximated Taylor expanding 3(z)
and £(z) from the point 2/ where the operator is evaluated .

- [ = (775 = 7€) = )P+ €)@ + 000)

then, at the zeroth order

<6(«T/)>LE ~ Z(ﬂl(:(,‘/))tr [6(x1)675v($l)ﬁ”+§(1/)@\j| — <6(x/)>5(w/)
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Local equilibrium mean values: first order corrections

The density matrix for local equilibrium reads(¢(z) = 0 for

simplicity ):
- 1 1 -
p = T eXp[_/BU( )P + 2wy/\( )J (VA/BU + VUB)\) ]
LE
m wNz) = —3(8"B* — 9*BY) — -+ is the thermal vorticity

n T = [LdS(y) n TR (y)(y — o)) — (v \)
m L2 = [ dS(y) n, T (y)(y — 2)* + (v > N)

For the global equilibrium w = cost reproduces the equilibrium with
rotation
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First order correction to stress-energy tensor

The first order corrections to the mean value of the stress energy
tensor can be computed again using liner response theory

v Py __&ﬂ,\(x) 0 4t (TN (00) THv
(T")1e = (T")ia = == S / A (T @), T O)r

in Fourier transform becomes:

()1 — ()0 = tim P07 g o), T @y e
' p—0 B 8pZ —o0 ’

These are the terms produced by the "shear" operator Ew that
vanish at global equilibrium.
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First order correction to stress-energy tensor

~ ~ 0
T — (T™ Y = 0;8x lim ——1 )
(T"Yg — (T" Yiq a/BApO}le) 0 mGg(po, P)

Since ImG is an odd function of the energy py because of PT
symmetry

ImGRr(po, p) = —ImGRr(—po, P)

then the first order contribution vanish

(TM) g — (T")iq = O(0%)
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Local equilibrium: second order corrections

1 tr(f/“/ (x)e—ﬁu(x)ﬁl/—i-%wxu(x)f;\”_%(VA,BV_,_VVﬁA)E;)\)

({I*(@))re = -

LE
It is possible to expand up to second order using twice the identity

(Kubo-Identity):

I 1 S
AtB _ A [1 +/ D MBAATB)

0

This expansion yields the 3 point retarded function

= 0t —t1)0(tr — t2)([[A(x)
+ 0t — )0t — 1) {[[A(x)

Géjlgc(w,:cl,xg) ,E(ml
70(:172
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Second order local equilibrium terms

Local Vorticity contribution

<T”V($)>LE = el —8;20 / d4£L'1/ d41'29 = t1)0(t1 — tz)

([T (), (x1 — 2) T (1)), (3 — )T (22)])7
+((a7 B,z1) < (o, p, x2))

t t
= —wag(x)wgg(w)/ d4ﬂc1/ d4$2G£iyJaBJpo(m,w1,m2)
_8ﬂ —00 —0o0

Local Shear contribution

Via V(,Bs 6 6 DR[O
( Bl\)(ivgﬂz(pﬁ )(:E)/ d4961/ d*z,GFy - L (%, 21, 22)
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Comparison with other calculations

G. D. Moore and K. A. Sohrabi, Phys. Rev. Lett. 106, 122302 (2011)

P. Arnold, D. Vaman, C. Wu and W. Xiao, JHEP 1110, 033 (2011)

The second order Kubo formulae are obtained turning on a metric
perturbation g"”(z) = n*” + h*¥(z) and expanding in series the
mean value of the stress tensor in power of h*

(@) = [ ataha, G (@) + -

To find the transport coefficients we need to solve the hydro
equation in curved background, then expanding in h

VMT;W =0—=T% = _Ph™ _ nathxy + ..

Matching the above expressions one identifies transport coefficients
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Second order terms of the stress energy tensor

The second order expression for the stress energy tensor

R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, JHEP 0804, 100 (2008)

V.
N7 (u- Vot + 3 ua’“’) + I<:(R<’“’> — QuQuBRM“”)B)

+\ 0.; JA> + Ao #QV}A+/\3Q§\AtQu>)\

A\
+nry uU'uU + /\4V Fln sV In s + ;Q*QUO‘UJBR&(#VW

FA" (—Cru - VV - u 4 0P 05 + E(V - u)?
+650050% + £,V InsVP Ins + &R + Eu®u’ Ray)

m V Covariant derivative

B AHY = yFu? + g Transverse projector

] = AHAYB(Vug + a3 B — 2A,5Vu7))
Q/w = %A“O‘A”ﬁ( alp — Vaua) vort|C|ty

RHvB Cyrvature tensor 13/15



Vorticity contribution

Q is orthogonal to u, w is not
wuu” # 0 Quu” =0

A3 coefficient is finite, non-vanishing, also at equilibrium.
41 4 4 fﬂy x0,350 —i(z1-p+a2-q)
A3 ;IBO 8p28q /d :El/d oG (0,21, x2)e

G. D. Moore and K. A. Sohrabi, JHEP 1211, 148 (2012)
We are comparing these expressions with those obtained in our
approach and also evaluate the longitudinal contribution.
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Summary and Outlook

m We are studying the local equilibrium correction to the stress
energy tensor

m The most important correction seems to be quadratic in
vorticity

m We are going to compare our approach with the other
calculation.
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