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Jet-quenching and two-particle correlations in HIC
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Au+Au / p+p 

= 200 GeVs

Jet-medium interaction?

Possible contributions to this double-peak structure:
● Deflected jets
● Jet-medium interaction resulting into Shock waves in form of Mach cones
● Triangular flow originated from initial state fluctuations → 

Do Mach Cones have something to do with double peaks?
Do they contribute to the double-peak structure observed in experiments?
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The Parton Cascade BAMPS

Boltzmann 
Approach for 
Multi-
Parton 
Scatteringsp ∂ f x ,p=C22C23...

● Transport algorithm solving the Boltzmann 
equation using Monte Carlo techniques

● Stochastic interpretation of collision rates

● In general:
pQCD interactions, 2 ↔ 3 processes,
quarks and gluons
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Mach Cones
● If a source (perturbation) is propagating faster than the speed of sound,

then a Mach Cone structure is observed

Mach cone
perturbation



  

Investigation of Mach Cones
In a static system

● Static System, no expansion

● Jet energy is fixed and cannot be deflected
→ two different scenarios of the energy
deposition:

●  PED: pure energy deposition
● JET: energy and momentum deposition



  

Ideal Solutions of Mach Cones



  

Viscous Solutions of Mach Cones

Mach Cone structure still visible for η/s=0.1−0.15



  

Mach Cones in BAMPS
Two Particle Correlations for ideal solution

Numerical Results

The source term plays a big role for observation a double peak structure

10 GeV/fm 200 GeV/fmIDEAL



  

Mach Cones in BAMPS
Two Particle Correlations for viscous solution

Numerical Results

Viscosity does not help for the development fo the double peak structure

10 GeV/fm 200 GeV/fm
VISCOUS



  

Investigation of Mach Cones
In Full relativistic HIC

● Initial conditions as given at RHIC using
a parametrization for the distribution function

● The main difference to the static is the
(longitudinal and transverse) expansion of the
medium 

● Jet energy is not fixed. Jet looses energy and
can be deflected

● For simplicity we investigate only full central
collisions, b=0 fm, and focus only at midrapidity



  

Initial conditions of the bulk medium

● Glauber initial conditions in transverse direction
● Parametrization for the non-thermal single-distribution function

Nuclear Thickness function Wood-Saxon distribution

with



  

Jet initialisation on top
→ Surface Emission

● Jet is initialised on a semicircle in the midrapidity,
while we have to consider several jet paths
→ Due to symmetry reasons we can can neglect several possible

jet paths

● We neglect the near-side jet and consider only the jet traversing
the medium

GeV
Betz et al. Phys.Rev.Lett. 105 (2010) 222301 



  

Scenario I

● Single jet event on the semi circle

● Results are shown at midrapidity
for several values of viscosities
and time steps

● Jet propagates in opposite direction
to radial flow

● Small viscosity means strong shock
wave development - Large viscosity
smooths out the characteristic
structure

● Shock front region of Mach cone
is strongly curved due to jet
quenching



  

Scenario I
● Single jet event on the semi circle is able to generate

a double-peak structure

● Head shock and diffusion wake is superimposed by the
radial flow, contribution of Mach cone wings can show up

● Double-peak structure shows up only for
higher-momentum particles

● Viscosity tends to destroy the double-peak structure



  

Scenario II

● Single jet event on the semi circle

● Results are shown at midrapidity
for several values of viscosities
and time steps

● Jet-induced Mach cone is strongly
distorted due to radial flow

● Small viscosity means strong shock
wave development - Large viscosity
smooths out the characteristic
structure



  

Scenario II
● Single jet event on the semi circle generates only one

peak

● Head shock and diffusion wake is only deflected, which
generates the one peak

● Viscosity tends to turn the peak into the the initial
propagation direction



  

Scenario III
● We take all paths of the jet on the semi-circle

● A double-peak structure appears due to the contribution
of the Mach cone wings (scenario I) and the superposition
of the deflected and distorted jet-induced Mach cones
(scenario II)

● Viscosity tends to destroy this double-peak structure



  

Conclusion ....

We considered the contribution to the double-peak
structure originating from jet-medium interaction
inducing Mach cones in a simplified setup...

● In a static system the double-peak structure is overshadowed by
the head shock and diffusion wake

● In a scenario where the interplay with the medium plays a role,
our studies show that a double-peak structure
can be generated by the Mach cone wings in a single jet event,
but its contribution seems to be very small

● The largest contribution comes from distorted
jet-induced Mach cones

● In case viscosity is too large, any signal of Mach cones or double-
peak structure ist destroyed



  

….Outlook

Implementation of initial stage fluctuations in BAMPS
in collaboration with K. Gallmeister

● Monte Carlo Glauber sampling instead of smooth initial sampling

Focus:

● A + A and p + A collisions

● Extracting flow observables v2, v3 and compare them with initial
excentricities

● Extracting two-particle correlations



  

Scenario I

- Mach cone evolution after subtracting
the background
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For isotropic elastic collisions:

Transport collision rate

Z. Xu & C. Greiner,
Phys.Rev.Lett.100:172301,2008

For this setup :
● Boltzmann gas, isotropic cross sections, elastic processes only
● Implementing a constant       , we locally get the cross section      :

The Parton Cascade BAMPS



  

Static Box in BAMPS

● Static Box with a constant temperature. Medium
is initially in thermal equilibrium 
→ no expansion of the medium

● Two different source terms are applied
for this study



  

Punch Through Scenario

● Jet has finite initial energy and momentum E = pz and is massless;
no transverse momentum →  px = py = 0

● The Jet deposits energy to the medium due to binary collisions with particles

● After every collision with a thermal particle of the medium the energy of the jet
gets recharged to its inital value

v

Jet

A scenario usefull to investigate the shape and development of ideal Mach Cones



  

t 0 t 1

Energy deposition via the creation of thermal distributed particles

● The source (green) propagates with the speed of light and generates new particles
(blue) at different timesteps

● The advantage of that method: a constant energy deposition but no momentum
deposition, because new particles are thermal distributed

f ped x , p =e−E /T

Pure energy deposition Scenario



  

Transition from ideal hydro to free streaming

Boltzmann solution of the relativistic 
Riemann problem

->what effects have viscosity?

I. Bouras et al., Phys. Rev. Lett. 103:032301 (2009)

The Relativistic Riemann Problem
Investigation of Shock Waves in one dimension

I. Bouras et al., PRC 82, 024910 (2010)



  



c s

Jet

Scenario for a stronger perturbation

=arccos
v shock

v jet

v jet



v jet

Jet

v shock

● In the case of a stronger perturbation the energy deposition is larger and therefore
shock waves develop which exceed the speed of sound. Therefore the angle is
approximately given by

● The emission angle     changes to smaller values than in the weak perturbation case

v shock=[  P4−P3e3P4

e4−e3e4P3 ]
1
2

P3
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medium

Mach Cones
Mach angle dependence



  

Mach Cones in BAMPS
Two Particle Correlations

Analytical solution
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alpha is a const and corresponds to the Mach angle, where v_coll is the collective
velocity of matter velocity in the wings
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Thermal equilibrium

Assume two wings in thermal equilibrium



  

Mach Cones in BAMPS
Two Particle Correlations

Analytical solution

p z= pcos sin 

p x=p sin sin 
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● We are looking for the angle    , which is the angle in the p_x and p_z plane
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One calculate for each wing the particle distribution

In the end one has to add both contributions!
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σ= 40mb
m=938MeV

n=2n0
dE /dx=20GeV / fm

t = 5 fm t = 15 fm t = 25 fm

Proton gas W. Scheid, H. Muller & W. Greiner, Phys.Rev.Lett., 1974
D. Rischke, H. Stöcker & W. Greiner, Phys. Rev. D, 1990

Mach cones at Bevalac?



  

Mach cones in static medium

● Curved structure due to jet quenching

● Viscosity destroys the structure 
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