Learning
What you see is what you learn

Jenia Jitsev
FIAS, Frankfurt Am Main

December 4, 2007
1 To Learn or Not To Learn
 • Variations on Learning
 • When, What, Where

2 Special Case for Hyperacuity
 • Vernier Acuity
 • Hyperacuity without Generalization

3 Quest For Relevancy
 • Learning without Perceiving
 • Passive vs Active Learning

4 A Way To The Invariance
 • Seeking The Same
 • Stability Cheated

5 Never Ending Learning
Variations on Learning

"Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training"

- Relatively Permanent Change
 - Habituation, Sensitization...

- Priming...

- Change of Behavior/Perception
 - Positive:
 - Negative:

- caused by Experience/Training
 - Motivation, Attention: Relevance of the Task for the Organism
 - Acquisition Speed: Task Difficulty, Available Feedback
Variations on Learning

"Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training"

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive:
 - Negative:

- caused by Experience/Training
 - Motivation, Attention: Relevance of the Task for the Organism
 - Acquirement Speed: Task Difficulty, Available Feedback
Variations on Learning

"Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training"

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive: Improvement (Speed Of Reaction, Accuracy, Discrimination, Efficacy (e.g, detection threshold))
 - Negative: Misperception, Interference with other tasks? caused by Experience/Training

- Motivation, Attention: Relevance of the Task for the Organism
- Acquisition Speed: Task Difficulty, Available Feedback
Variations on Learning

"Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training"

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive:
 - Negative:

- caused by Experience/Training
 - Motivation, Attention: Relevance of the Task for the Organism
 - Acquirement Speed: Task Difficulty, Available Feedback
”Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training”

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive:
 - Negative:

- caused by Experience/Training
 - Motivation, Attention: Relevance of the Task for the Organism
 - Acquisition Speed, Task Difficulty, Available Feedback
Variations on Learning

"Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training"

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive:
 - Negative:

- caused by Experience/Training
 - Motivation, Attention: Relevance of the Task for the Organism
 - Acquisition Speed: Task Difficulty, Available Feedback
Variations on Learning

”Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training”

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive: Improvement (Speed Of Reaction, Accuracy, Discrimination, Efficacy (e.g., detection threshold))
 - Negative: Misperception, Interference with other tasks?

caused by Experience/Training
 - Motivation, Attention: Relevance of the Task for the Organism
 - Acquisition Speed: Task Difficulty, Available Feedback
Variations on Learning

"Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training"

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive: Improvement (Speed Of Reaction, Accuracy, Discrimination, Efficacy (e.g, detection threshold))
 - Negative: Misperception, Interference with other tasks?

- caused by Experience/Training
 - Motivation, Attention: Relevance of the Task for the Organism
 - Acquirement Speed: Task Difficulty, Available Feedback
Variations on Learning

"Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training"

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive: Improvement (Speed Of Reaction, Accuracy, Discrimination, Efficacy (e.g, detection threshold))
 - Negative: Misperception, Interference with other tasks?

caused by Experience/Training

Motivation, Attention: Relevance of the Task for the Organism
Acquirement Speed, Task Difficulty, Available Feedback
Variations on Learning

"Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training"

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid, reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive: Improvement (Speed Of Reaction, Accuracy, Discrimination, Efficacy (e.g., detection threshold))
 - Negative: Misperception, Interference with other tasks?

caused by Experience/Training

- Motivation, Attention: Relevance of the Task for the Organism
- Acquisition Speed: Task Difficulty, Available Feedback
Variations on Learning

"Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training”

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive: Improvement (Speed Of Reaction, Accuracy Discrimination, Efficacy (e.g., detection threshold))
 - Negative: Misperception, Interference with other tasks?

- caused by Experience/Training
 - Motivation, Attention: Relevance of the Task for the Organism
 - Acquisition Speed, Task Difficulty, Available Feedback
Variations on Learning

”Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training”

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive: Improvement (Speed Of Reaction, Accuracy, Discrimination, Efficacy (e.g. detection threshold))
 - Negative: Misperception, Interference with other tasks?

- caused by Experience/Training
 - Motivation, Attention: Relevance of the Task for the Organism
 - Acquirement Speed: Task Difficulty, Available Feedback
Variations on Learning

"Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training"

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive: Improvement (Speed Of Reaction, Accuracy, Discrimination, Efficacy (e.g., detection threshold))
 - Negative: Misperception, Interference with other tasks?

caused by Experience/Training

- Motivation, Attention: Relevance of the Task for the Organism
- Acquisition Speed: Task Difficulty, Available Feedback
Variations on Learning

"Relatively Permanent Change Of Perception/Behavior caused by previous Experience/Training"

- Relatively Permanent Change
 - Habituation, Sensitization.... mostly ephemeral, rapid reversible
 - Priming.... can be very persistent (Eureka-Effect on Puzzle Pictures giving a cue)

- Change of Behavior/Perception
 - Positive: Improvement (Speed Of Reaction, Accuracy, Discrimination, Efficacy (e.g., detection threshold))
 - Negative: Misperception, Interference with other tasks?

- caused by Experience/Training
 - Motivation, Attention: Relevance of the Task for the Organism
 - Acquisition Speed: Task Difficulty, Available Feedback
Variations on Learning II

An Important Distinction:

- Explicit, Declarative:
- Implicit, Procedural:
Variations on Learning II

An Important Distinction:

- Explicit, Declarative:
- Implicit, Procedural:
Variations on Learning II

An Important Distinction:

- Explicit, Declarative: "I know he is a bad guy because his wears a beard like Osama"

- Implicit, Procedural:
An Important Distinction:

- Explicit, Declarative: Accessible, Verbalizable, Communicable Features
- Implicit, Procedural:
Variations on Learning II

An Important Distinction:

- Explicit, Declarative: Accessible, Verbalizable, Communicable Features
- Implicit, Procedural:
Variations on Learning II

An Important Distinction:

- Explicit, Declarative: Accessible, Verbalizable, Communicable Features
- Implicit, Procedural: "No idea why, but i know this girl is the right one."
Variations on Learning II

An Important Distinction:

- Explicit, Declarative: Accessible, Verbalizable, Communicable Features
- Implicit, Procedural: Non-Accessible, Non-Verbalizable, Non-Communicable Features
Variations on Learning II

An Important Distinction:

- Explicit, Declarative: Accessible, Verbalizable, Communicable Features
- Implicit, Procedural: "Automatic", Consciously not Accessible Modification
When To Learn

Ready, Steady - Learn?

- **General Prerequisites: Arousal, Motivation.**
- Passive Learning: Simple Exposure to Stimuli Enough to Trigger Learning?
- Active Learning: If Reacting while exposure, what are the conditions to trigger learning?
When To Learn

Ready, Steady - Learn?

- General Prerequisites: Arousal, Motivation.
- Passive Learning: Simple Exposure to Stimuli Enough to Trigger Learning?
- Active Learning: If Reacting while exposure, what are the conditions to trigger learning?
When To Learn

Ready, Steady - Learn?

- **General Prerequisites:** Arousal, Motivation.
- **Passive Learning:** Simple Exposure to Stimuli Enough to Trigger Learning?
- **Active Learning:** If Reacting while exposure, what are the conditions to trigger learning?
- **Learn Now:** A Global Signal? Which Neuromodulatory Systems Involved (Ach, DA, NA,...)
When To Learn

Ready, Steady - Learn?

- General Prerequisites: Arousal, Motivation.
- Passive Learning: Simple Exposure to Stimuli Enough to Trigger Learning?
- Active Learning: If Reacting while exposure, what are the conditions to trigger learning?
Choosing what aspects are relevant according to task and situation.

- **Task Relevancy: Focusing only on task relevant stimuli?**
- **Selection Process: Link to Attentional Mechanisms?**
- **Generalization: What Determines Grade Of Transfer to Other Tasks or Situations?**
What to Learn

Choosing what aspects are relevant according to task and situation.

- Task Relevancy: Focusing only on task relevant stimuli?
- Selection Process: Link to Attentional Mechanisms?
- Generalization: What Determines Grade Of Transfer to Other Tasks or Situations?
What to Learn

Choosing what aspects are relevant according to task and situation.

- Task Relevancy: Focusing only on task relevant stimuli?
- Selection Process: Link to Attentional Mechanisms?
- Generalization: What Determines Grade Of Transfer to Other Tasks or Situations?
Where to Learn

Plasticity is potentially given on many stages of processing.

- **Locus Of Learning**: Early, Middle, Late Stage or All Together?
- **Gating Learning**: Restricting Modifications to Certain Sites
Plasticity is potentially given on many stages of processing.

- **Locus Of Learning:** Early, Middle, Late Stage or All Together?
- **Gating Learning:** Restricting Modifications to Certain Sites
Visual Acuity

Measurement of Spatial Resolution of The Eye Apparatus
Visus = 1 / \(\alpha \)
\(\alpha = \text{minimal detected Angle of Vision in Angle Minutes} \)

Visus Identification with Landolt-Ring

Vernier Acuity
\(\alpha = 10'' \quad (1/360°) \)
\(d' \sim 0.5 \text{ (!) } \mu m \)

maximal Resolution
\(\alpha = 1' (1/60°) \)
\(d' \sim 5 \mu m \)

foveal Cone Mosaic
\(x \sim 2.4 - 2.6 \mu m \)
Retinal Density

Visual Acuity

- **Papilla nervi optici (blind spot)**
- **Photopic (Daylight)**
- **Scotopic (Twilight)**

Receptor Density

- **Rhodes**
- **Cones**

Graph Details

- **Visual Acuity (Minutes of Angle)^-1**
- **Receptor Density (1000/mm^2)**
- **Fovea**
Visual Acuity

Measurement of Spatial Resolution of The Eye Apparatus

- **Visual Acuity**: Inverse of The Maximal Measured Resolution (in Minutes of Visual Angle)
 - Normal Acuity: \(\frac{1}{\alpha} = 1.0 \), with \(\alpha = 1' \) (corresponds to \(5\mu m \) distance on retina)
 - Retinal Mosaic: two cones in foveal area are approx. \(2.4 - 2.6\mu m \) apart

- **Vernier Acuity**: Hyperacuity in Discrimination of Line Segment Shifts
 - Hyperacuity: \(\frac{1}{\alpha} = 6.0 \), with \(\alpha = 10'' \) (corresponds to \(800nm \) distance on retina)
 - Training: Shift Detection Threshold can be substantially lowered (up to 5 times lower)
Visual Acuity

Measurement of Spatial Resolution of The Eye Apparatus

- **Visual Acuity**: Inverse of The Maximal Measured Resolution (in Minutes of Visual Angle)
 - Normal Acuity: \(1/\alpha = 1.0\), with \(\alpha = 1'\) (corresponds to 5\(\mu m\) distance on retina)
 - Retinal Mosaic: two cones in foveal area are approx. 2.4 – 2.6\(\mu m\) apart

- **Vernier Acuity**: Hyperacuity in Discrimination of Line Segment Shifts
 - Hyperacuity: \(1/\alpha = 6.0\), with \(\alpha = 10''\) (corresponds to 800\(nm\) distance on retina)
 - Training: Shift Detection Threshold can be substantially lowered (up to 5 times lower)
Visual Acuity

Measurement of Spatial Resolution of The Eye Apparatus

- **Visual Acuity**: Inverse of The Maximal Measured Resolution (in Minutes of Visual Angle)
 - Normal Acuity: $1/\alpha = 1.0$, with $\alpha = 1'$ (corresponds to 5μm distance on retina)
 - Retinal Mosaic: two cones in foveal area are approx. 2.4 – 2.6μm apart

- **Vernier Acuity**: Hyperacuity in Discrimination of Line Segment Shifts
 - Hyperacuity: $1/\alpha = 6.0$, with $\alpha = 10''$ (corresponds to 800nm distance on retina)
 - Training: Shift Detection Threshold can be substantially lowered (up to 5 times lower)
Visual Acuity

Measurement of Spatial Resolution of The Eye Apparatus

- **Visual Acuity**: Inverse of The Maximal Measured Resolution (in Minutes of Visual Angle)
 - Normal Acuity: $1/\alpha = 1.0$, with $\alpha = 1'$ (corresponds to $5\mu m$ distance on retina)
 - Retinal Mosaic: two cones in foveal area are approx. $2.4 – 2.6\mu m$ apart

- **Vernier Acuity**: Hyperacuity in Discrimination of Line Segment Shifts
 - Hyperacuity: $1/\alpha = 6.0$, with $\alpha = 10''$ (corresponds to $800nm$ distance on retina)
 - Training: Shift Detection Threshold can be substantially lowered (up to 5 times lower)
Visual Acuity

Measurement of Spatial Resolution of The Eye Apparatus

- **Visual Acuity**: Inverse of The Maximal Measured Resolution (in Minutes of Visual Angle)
 - Normal Acuity: $1/\alpha = 1.0$, with $\alpha = 1'$ (corresponds to $5\mu m$ distance on retina)
 - Retinal Mosaic: two cones in foveal area are approx. $2.4 - 2.6\mu m$ apart

- **Vernier Acuity**: Hyperacuity in Discrimination of Line Segment Shifts
 - Hyperacuity: $1/\alpha = 6.0$, with $\alpha = 10''$ (corresponds to $800nm$ distance on retina)
 - Training: Shift Detection Threshold can be substantially lowered (up to 5 times lower)
Measurement of Spatial Resolution of The Eye Apparatus

- **Visual Acuity**: Inverse of The Maximal Measured Resolution (in Minutes of Visual Angle)
 - Normal Acuity: $1/\alpha = 1.0$, with $\alpha = 1'$ (corresponds to $5 \mu m$ distance on retina)
 - Retinal Mosaic: two cones in foveal area are approx. $2.4 - 2.6 \mu m$ apart

- **Vernier Acuity**: Hyperacuity in Discrimination of Line Segment Shifts
 - Hyperacuity: $1/\alpha = 6.0$, with $\alpha = 10''$ (corresponds to $800 nm$ distance on retina)
 - **Training**: Shift Detection Threshold can be substantially lowered (up to 5 times lower)
Standard Stimuli

Landolt-Ring
Standard Stimuli

Vernier Lines
General Experiment Setting [Fahle, 2004]

Subjects exposed to series of Vernier Elements

- **Fixed Offset Sizes**
- Presented for 100 – 150 ms
- Active Exposure
 - Binary Forced-Choice Task: Press one of two buttons to indicate offset (left/right, up/down)
 - Without time pressure (optionally restricting reaction time to 5 s)
Subjects exposed to series of Vernier Elements

- **Fixed Offset Sizes**
- **Presented for 100 – 150ms**
- **Active Exposure**
 - Binary Forced-Choice Task: Press one of two buttons to indicate offset (left/right, up/down)
 - Without time pressure (optionally restricting reaction time to 5 s)
General Experiment Setting [Fahle, 2004]

Subjects exposed to series of Vernier Elements

- Fixed Offset Sizes
- Presented for 100 – 150 ms
- Active Exposure
 - Binary Forced-Choice Task: Press one of two buttons to indicate offset (left/right, up/down)
 - Without time pressure (optionally restricting reaction time to 5 s)
General Experiment Setting [Fahle, 2004]

Subjects exposed to series of Vernier Elements

- Fixed Offset Sizes
- Presented for 100 – 150ms
- Active Exposure
 - Binary Forced-Choice Task: Press one of two buttons to indicate offset (left/right, up/down)
 - Without time pressure (optionally restricting reaction time to 5s)
General Experiment Setting [Fahle, 2004]

Subjects exposed to series of Vernier Elements

- Fixed Offset Sizes
- Presented for 100 – 150ms
- Active Exposure
 - Binary Forced-Choice Task: Press one of two buttons to indicate offset (left/right, up/down)
 - Without time pressure (optionally restricting reaction time to 5s)
General Experiment Setting [Fahle, 2004]
Hyperacuity suffers Hyperspecificity

Rapid Learning, Well Persisting

- Improvement within only one hour of training
- Performance remains constant over night

However, Learning is highly specific to

- Trained Orientation: No Transfer to Other, even Slightly Deviating Orientations.
- Trained Position: No Transfer to Other Positions in Visual Field, Even if They are Neighboring.
- Trained Eye: No Transfer to Another Eye.
- Trained Task: No Transfer to Another, Similar Task.
Hyperacuity suffers Hyperspecificity

Rapid Learning, Well Persisting

- Improvement within only one hour of training
- Performance remains constant over night

However, Learning is highly specific to

- Trained Orientation: No Transfer to Other, even Slightly Deviating Orientations.
- Trained Position: No Transfer to Other Positions in Visual Field, Even if They are Neighboring.
- Trained Eye: No Transfer to Another Eye.
- Trained Task: No Transfer to Another, Similar Task.
Hyperacuity suffers Hyperspecificity

Rapid Learning, Well Persisting

- Improvement within only one hour of training
- Performance remains constant over night

However, Learning is highly specific to

- **Trained Orientation:** No Transfer to Other, even Slightly Deviating Orientations.
- **Trained Position:** No Transfer to Other Positions in Visual Field, Even if They are Neighboring.
- **Trained Eye:** No Transfer to Another Eye.
- **Trained Task:** No Transfer to Another, Similar Task.
Hyperacuity suffers Hyperspecificity

Rapid Learning, Well Persisting
- Improvement within only one hour of training
- Performance remains constant over night

However, Learning is highly specific to
- Trained Orientation: No Transfer to Other, even Slightly Deviating Orientations.
- Trained Position: No Transfer to Other Positions in Visual Field, Even if They are Neighboring.
- Trained Eye: No Transfer to Another Eye.
- Trained Task: No Transfer to Another, Similar Task.
Hyperacuity suffers Hyperspecificity

Rapid Learning, Well Persisting

- Improvement within only one hour of training
- Performance remains constant over night

However, Learning is highly specific to

- Trained Orientation: No Transfer to Other, even Slightly Deviating Orientations.
- Trained Position: No Transfer to Other Positions in Visual Field, Even if They are Neighboring.
- Trained Eye: No Transfer to Another Eye.
- Trained Task: No Transfer to Another, Similar Task.
Rapid Learning, Well Persisting

- Improvement within only one hour of training
- Performance remains constant over night

However, Learning is highly specific to

- Trained Orientation: No Transfer to Other, even Slightly Deviating Orientations.
- Trained Position: No Transfer to Other Positions in Visual Field, Even if They are Neighboring.
- Trained Eye: No Transfer to Another Eye.
- **Trained Task: No Transfer to Another, Similar Task.**
Hyperacuity suffers Hyperspecificity

Figure: No Transfer To Another Orientation
Hyperacuity suffers Hyperspecificity

Figure: No Transfer To Another Position
Hyperacuity suffers Hyperspecificity

Figure: No Transfer To Another Eye
Attention and Feedback matter

Attention: choosing one task while suppressing another.

- Presenting two vernier tasks simultaneously: horizontal and vertical
- Improvement persists only for attended task: No Transfer by Switching although Stimulus Stays The Same

Feedback: None is Better than Wrong.

- No External Feedback: Improvement is there, but Learning significantly slower
- Partial Feedback: Providing Feedback on Half of Responses almost as Fast as Full Feedback.
- Uncorrelated Feedback: Effectively Preventing Improvement.
- Block Feedback: As Useful As Normal Feedback, Uncorrelated Version Prevents Improvement, too
Attention and Feedback matter

Attention: choosing one task while suppressing another.

- Presenting two vernier tasks simultaneously: horizontal and vertical

- Improvement persists only for attended task: No Transfer by Switching although Stimulus Stays The Same

Feedback: None is Better than Wrong.

- No External Feedback: Improvement is there, but Learning significantly slower

- Partial Feedback: Providing Feedback on Half of Responses almost as Fast as Full Feedback.

- Uncorrelated Feedback: Effectively Preventing Improvement.

- Block Feedback: As Useful As Normal Feedback, Uncorrelated Version Prevents Improvement, too
Attention and Feedback matter

Attention: choosing one task while suppressing another.
- Presenting two vernier tasks simultaneously: horizontal and vertical
- Improvement persists only for attended task: No Transfer by Switching although Stimulus Stays The Same

Feedback: None is Better than Wrong.
- No External Feedback: Improvement is there, but Learning significantly slower
 - Partial Feedback: Providing Feedback on Half of Responses almost as Fast as Full Feedback.
 - Uncorrelated Feedback: Effectively Preventing Improvement.
 - Block Feedback: As Useful As Normal Feedback, Uncorrelated Version Prevents Improvement, too
Attention and Feedback matter

Attention: choosing one task while suppressing another.
- Presenting two vernier tasks simultaneously: horizontal and vertical
- Improvement persists only for attended task: No Transfer by Switching although Stimulus Stays The Same

Feedback: None is Better than Wrong.
- No External Feedback: Improvement is there, but Learning significantly slower
- Partial Feedback: Providing Feedback on Half of Responses almost as Fast as Full Feedback.
- Uncorrelated Feedback: Effectively Preventing Improvement.
- Block Feedback: As Useful As Normal Feedback, Uncorrelated Version Prevents Improvement, too
Attention and Feedback matter

Attention: choosing one task while suppressing another.
- Presenting two vernier tasks simultaneously: horizontal and vertical
- Improvement persists only for attended task: No Transfer by Switching although Stimulus Stays The Same

Feedback: None is Better than Wrong.
- No External Feedback: Improvement is there, but Learning significantly slower
- Partial Feedback: Providing Feedback on Half of Responses almost as Fast as Full Feedback.
 - Uncorrelated Feedback: Effectively Preventing Improvement.
- Block Feedback: As Useful As Normal Feedback, Uncorrelated Version Prevents Improvement, too
Attention and Feedback matter

Attention: choosing one task while suppressing another.

- Presenting two vernier tasks simultaneously: horizontal and vertical
- Improvement persists only for attended task: No Transfer by Switching although Stimulus Stays The Same

Feedback: None is Better than Wrong.

- No External Feedback: Improvement is there, but Learning significantly slower
- Partial Feedback: Providing Feedback on Half of Responses almost as Fast as Full Feedback.
- Uncorrelated Feedback: Effectively Preventing Improvement.
- Block Feedback: As Useful As Normal Feedback, Uncorrelated Version Prevents Improvement, too
Attention and Feedback matter

Figure: No Transfer To Unattended Task
High and Low

Low-Level Modifications Under High-Level Control

- Specificity Of Improvements points on modifications of neuronal responses in early, primary areas.
- Influence of Feedback and Attention: Hints for Modulation from Higher Areas.
- Hypothesis: Early Modification and Selection through Top-Down Control.
High and Low

Low-Level Modifications Under High-Level Control

- Specificity Of Improvements points on modifications of neuronal responses in early, primary areas.

- Influence of Feedback and Attention: Hints for Modulation from Higher Areas.

- Hypothesis: Early Modification and Selection through Top-Down Control.
High and Low

Low-Level Modifications Under High-Level Control

- Specificity Of Improvements points on modifications of neuronal responses in early, primary areas.
- Influence of Feedback and Attention: Hints for Modulation from Higher Areas.
- Hypothesis: Early Modification and Selection through Top-Down Control.
Task Irrelevant Learning

- **Learning without focusing attention?**
 - Hypothesis on Proof: Only attended, task relevant stimuli are subject to learning.
 - Trick [Seitz and Watanabe, 2005]: use a *subliminal stimulus*, which is not only task irrelevant, but would not even cause a conscious perception.
 - Test for Improvement on *supraliminal stimulus* in comparison to performance before learning.
 - Presenting three types of stimuli: task relevant target and distractor together with subliminal, task irrelevant stimulus.

- **Stimulus:** Dynamic Random-Dot Displays (DRD), local coherent moving dots
 - Level Of Coherency: 5% is subliminal (detection at chance level), 10% is supraliminal (over change level)
Learning without focusing attention?

- Hypothesis on Proof: Only attended, task relevant stimuli are subject to learning.
- Trick [Seitz and Watanabe, 2005]: use a subliminal stimulus, which is not only task irrelevant, but would not even cause a conscious perception.
- Test for Improvement on supraliminal stimulus in comparison to performance before learning.
- Presenting three types of stimuli: task relevant target and distractor together with subliminal, task irrelevant stimulus.

Stimulus: Dynamic Random-Dot Displays (DRD), local coherent moving dots

- Level Of Coherency: 5% is subliminal (detection at chance level), 10% is supraliminal (over change level)
Task Irrelevant Learning

- Learning without focusing attention?
 - Hypothesis on Proof: Only attended, task relevant stimuli are subject to learning.
 - Trick [Seitz and Watanabe, 2005]: use a *subliminal stimulus*, which is not only task irrelevant, but would not even cause a conscious perception.
 - Test for Improvement on *supraliminal stimulus* in comparison to performance before learning.
 - Presenting three types of stimuli: task relevant target and distractor together with subliminal, task irrelevant stimulus.

- Stimulus: Dynamic Random-Dot Displays (DRD), local coherent moving dots
 - Level Of Coherency: 5% is subliminal (detection at chance level), 10% is supraliminal (over change level)
Task Irrelevant Learning

- Learning without focusing attention?
 - Hypothesis on Proof: Only attended, task relevant stimuli are subject to learning.
 - Trick [Seitz and Watanabe, 2005]: use a *subliminal stimulus*, which is not only task irrelevant, but would not even cause a conscious perception.
 - Test for Improvement on *supraliminal stimulus* in comparison to performance before learning.

- Presenting three types of stimuli: task relevant target and distractor together with subliminal, task irrelevant stimulus.

- Stimulus: Dynamic Random-Dot Displays (DRD), local coherent moving dots
 - Level Of Coherency: 5% is subliminal (detection at chance level), 10% is supraliminal (over change level)
Task Irrelevant Learning

- Learning without focusing attention?
 - Hypothesis on Proof: Only attended, task relevant stimuli are subject to learning.
 - Trick [Seitz and Watanabe, 2005]: use a *subliminal stimulus*, which is not only task irrelevant, but would not even cause a conscious perception.
 - Test for Improvement on *supraliminal stimulus* in comparison to performance before learning.
 - Presenting three types of stimuli: task relevant target and distractor together with subliminal, task irrelevant stimulus.

- Stimulus: Dynamic Random-Dot Displays (DRD), local coherent moving dots
 - Level Of Coherency: 5% is subliminal (detection at chance level), 10% is supraliminal (over change level)
Task Irrelevant Learning

- Learning without focusing attention?
 - Hypothesis on Proof: Only attended, task relevant stimuli are subject to learning.
 - Trick [Seitz and Watanabe, 2005]: use a *subliminal stimulus*, which is not only task irrelevant, but would not even cause a conscious perception.
 - Test for Improvement on *supraliminal stimulus* in comparison to performance before learning.
 - Presenting three types of stimuli: task relevant target and distractor together with subliminal, task irrelevant stimulus.

- **Stimulus:** Dynamic Random-Dot Displays (DRD), local coherent moving dots
 - Level Of Coherency: 5% is subliminal (detection at chance level), 10% is supraliminal (over change level)
Learning without focusing attention?

- Hypothesis on Proof: Only attended, task relevant stimuli are subject to learning.
- Trick [Seitz and Watanabe, 2005]: use a subliminal stimulus, which is not only task irrelevant, but would not even cause a conscious perception.
- Test for Improvement on supraliminal stimulus in comparison to performance before learning.
- Presenting three types of stimuli: task relevant target and distractor together with subliminal, task irrelevant stimulus.

Stimulus: Dynamic Random-Dot Displays (DRD), local coherent moving dots

- Level Of Coherency: 5% is subliminal (detection at chance level), 10% is supraliminal (over change level)
Task Irrelevant Learning

Three Stages of Experiment [Seitz and Watanabe, 2005]

- **Pre-Test Stage**: Testing for Performance on sub- and supraliminal Stimulus
 - Present Sequence of Letters with subliminal dot motion in background, motion direction is the same along the sequence.
 - Targets are light gray letters, distractors are black letters.
 - At the end of the sequence, target letters have to be written down.

- **Exposure Stage**: Exposure to Task Together With Irrelevant Stimulus.

- **Post-Test Stage**: Testing For Performance Changes on sub- and supraliminal Stimulus.
Task Irrelevant Learning

Three Stages of Experiment [Seitz and Watanabe, 2005]

- **Pre-Test Stage:** Testing for Performance on sub- and supraliminal Stimulus
- **Exposure Stage:** Exposure to Task Together With Irrelevant Stimulus.
 - Present Sequence of Letters with subliminal dot motion in background, motion direction is the same along the sequence.
 - Targets are light gray letters, distractors are black letters.
 - At the end of the sequence, target letters have to be written down.
- **Post-Test Stage:** Testing For Performance Changes on sub- and supraliminal Stimulus.
Task Irrelevant Learning

Three Stages of Experiment [Seitz and Watanabe, 2005]

- **Pre-Test Stage:** Testing for Performance on sub- and supraliminal Stimulus

- **Exposure Stage:** Exposure to Task Together With Irrelevant Stimulus.
 - Present Sequence of Letters with subliminal dot motion in background, motion direction is the same along the sequence.
 - Targets are light gray letters, distractors are black letters.
 - At the end of the sequence, target letters have to be written down.

- **Post-Test Stage:** Testing For Performance Changes on sub- and supraliminal Stimulus.
Three Stages of Experiment [Seitz and Watanabe, 2005]

- **Pre-Test Stage:** Testing for Performance on sub- and supraliminal Stimulus.
- **Exposure Stage:** Exposure to Task Together With Irrelevant Stimulus.
 - Present Sequence of Letters with subliminal dot motion in background, motion direction is the same along the sequence.
 - Targets are light gray letters, distractors are black letters.
 - At the end of the sequence, target letters have to be written down.
- **Post-Test Stage:** Testing For Performance Changes on sub- and supraliminal Stimulus.
Task Irrelevant Learning

Three Stages of Experiment [Seitz and Watanabe, 2005]

- **Pre-Test Stage**: Testing for Performance on sub- and supraliminal Stimulus
- **Exposure Stage**: Exposure to Task Together With Irrelevant Stimulus.
 - Present Sequence of Letters with subliminal dot motion in background, motion direction is the same along the sequence.
 - **Targets are light gray letters, distractors are black letters.**
 - At the end of the sequence, target letters have to be written down.
- **Post-Test Stage**: Testing For Performance Changes on sub- and supraliminal Stimulus.
Task Irrelevant Learning

Three Stages of Experiment [Seitz and Watanabe, 2005]

- **Pre-Test Stage:** Testing for Performance on sub- and supraliminal Stimulus

- **Exposure Stage:** Exposure to Task Together With Irrelevant Stimulus.
 - Present Sequence of Letters with subliminal dot motion in background, motion direction is the same along the sequence.
 - Targets are light gray letters, distractors are black letters.
 - At the end of the sequence, target letters have to be written down.

- **Post-Test Stage:** Testing For Performance Changes on sub- and supraliminal Stimulus.
Task Irrelevant Learning

Three Stages of Experiment [Seitz and Watanabe, 2005]

- **Pre-Test Stage**: Testing for Performance on sub- and supraliminal Stimulus
- **Exposure Stage**: Exposure to Task Together With Irrelevant Stimulus.
 - Present Sequence of Letters with subliminal dot motion in background, motion direction is the same along the sequence.
 - Targets are light gray letters, distractors are black letters.
 - At the end of the sequence, target letters have to be written down.
- **Post-Test Stage**: Testing For Performance Changes on sub- and supraliminal Stimulus.
Task Irrelevant Learning

(a) Test → Exposure → Test
5% and 10% coherent motion → 5% coherent motion → 5% and 10% coherent motion

(b) Exposure stage
Q: what are white letters?

(c) Test Stage
Q: which direction?

(d) Test Stage Results
% Correct vs. Relative motion direction (deg)
Passive Learning

Result

- **On Subliminal Coherence Level (5%):** No Changes Observed, Detection Still at Chance Level
- **On Supraliminal Coherence Level (10%):** Detection Performance is greatly improved for the used stimulus orientation
- Learning Effect Retained After Month Without Training
- Learning Effect Is Well Transferred To Neighboring Orientations
- Unattended Stimulus is proceeded by the learning process: Passive Learning?
Passive Learning

Result

- **On Subliminal Coherence Level (5%)**: No Changes Observed, Detection Still at Chance Level
- **On Supraliminal Coherence Level (10%)**: Detection Performance is greatly improved for the used stimulus orientation
- Learning Effect Retained After Month Without Training
- Learning Effect Is Well Transfered To Neighboring Orientations
- Unattended Stimulus is proceeded by the learning process: Passive Learning?
Passive Learning

Result

- On Subliminal Coherence Level (5%): No Changes Observed, Detection Still at Chance Level
- On Supraliminal Coherence Level (10%): Detection Performance is greatly improved for the used stimulus orientation
- Learning Effect Retained After Month Without Training
- Learning Effect Is Well Transfered To Neighboring Orientations
- Unattended Stimulus is proceeded by the learning process: Passive Learning?
Passive Learning

Result

- On Subliminal Coherence Level (5%): No Changes Observed, Detection Still at Chance Level

- On Supraliminal Coherence Level (10%): Detection Performance is greatly improved for the used stimulus orientation

- Learning Effect Retained After Month Without Training

- Learning Effect Is Well Transferred To Neighboring Orientations

- Unattended Stimulus is proceeded by the learning process: Passive Learning?
Passive Learning

Result

- On Subliminal Coherence Level (5%): No Changes Observed, Detection Still at Chance Level
- On Supraliminal Coherence Level (10%): Detection Performance is greatly improved for the used stimulus orientation
- Learning Effect Retained After Month Without Training
- Learning Effect Is Well Transferred To Neighboring Orientations
- Unattended Stimulus is proceeded by the learning process: Passive Learning?
Hypothesizing Passive Learning: Learning may have occurred simply by exposure to stimulus.

- Presenting Various Move Directions should Equally Improve Detection

- What happens, if one move direction will be coupled to targets and others not?
Reinforcing the Irrelevance

Hypothesizing Passive Learning: Learning may have occurred simply by exposure to stimulus.

- Presenting Various Move Directions should Equally Improve Detection

- What happens, if one move direction will be coupled to targets and others not?
Reinforcing the Irrelevance: Experiment
[Seitz and Watanabe, 2003]
Not Passive, Unspecific Active

Result

- Improvement Is Still Achieved...

- ... But Only On The Moving Direction Paired with The Targets.

- Only Target Events seem to trigger learning.

- If A Stimulus consistently coincide with such Events, it gets involved in Learning Process.
Not Passive, Unspecific Active

Result

- Improvement Is Still Achieved...
- ... But Only On The Moving Direction Paired with The Targets.
- Only Target Events seem to trigger learning.
- If A Stimulus consistently coincide with such Events, it gets involved in Learning Process.
Not Passive, Unspecific Active

Result

- Improvement Is Still Achieved...
- ... But Only On The Moving Direction Paired with The Targets.
- Only Target Events seem to trigger learning.
- If A Stimulus consistently coincide with such Events, it gets involved in Learning Process.
Result

- Improvement Is Still Achieved...
- ... But Only On The Moving Direction Paired with The Targets.
- Only Target Events seem to trigger learning.
- If A Stimulus consistently coincide with such Events, it gets involved in Learning Process.
Proposing different Subsystems involved in Learning Control

- **Alerting System:** Control of Non-Specific Arousal State (e.g., signaling for Reinforcement); Diffuse Signaling
- **Orienting System:** Directing Resources to a specific Stimulus Or Stimulus Feature (Focused Attention); Specific Signaling
- **Executive System:** Resolving Task Involving Conflicts (Not Covered Here)
Proposing different Subsystems involved in Learning Control

- Alerting System: Control of Non-Specific Arousal State (e.g., signaling for Reinforcement); Diffuse Signaling
- Orienting System: Directing Resources to a specific Stimulus Or Stimulus Feature (Focused Attention); Specific Signaling
- Executive System: Resolving Task Involving Conflicts (Not Covered Here)
Proposing different Subsystems involved in Learning Control

- Alerting System: Control of Non-Specific Arousal State (e.g, signaling for Reinforcement); Diffuse Signaling
- Orienting System: Directing Resources to a specific Stimulus Or Stimulus Feature (Focused Attention); Specific Signaling
- Executive System: Resolving Task Involving Conflicts (Not Covered Here)
Diffuse Learning

Reinforcement signals

Alerting

Task-irrelevant learning

Target recognition

Task-relevant learning

Irrelevant feature

Task target

Orienting

To Learn or Not To Learn

Special Case for Hyperacuity

Quest For Relevancy

A Way To The Invariance

Never Ending Learning
Learning spreads to task-irrelevant stimuli via diffuse Alert Now signal

- Coincidence of diffuse alert signal and task-irrelevant stimulus required
- Potential Sources Of Alert Now Signals: numerous widely releasing neuromodulatory systems:
 - Dopaminerg (Ventral Tegmental Area...)
 - Cholinerg (Nucleus Basalis Meynert in Forebrain, Nucleus Tegmentalis Pedunculopontin (PPN))
 - Noradrenerg (Locus Caeruleus)
Enhancing by Alerting

Learning spreads to task-irrelevant stimuli via diffuse Alert Now signal

- Coincidence of diffuse alert signal and task-irrelevant stimulus required

- Potential Sources Of Alert Now Signals: numerous widely releasing neuromodulatory systems:
 - Dopaminerg (Ventral Tegmental Area...)
 - Cholinerg (Nucleus Basalis Meynert in Forebrain, Nucleus Tegmentalis Pedunculopontin (PPN))
 - Noradrenerg (Locus Caeruleus)
Enveloping by Alerting

Learning spreads to task-irrelevant stimuli via diffuse Alert Now signal

- Coincidence of diffuse alert signal and task-irrelevant stimulus required
- Potential Sources Of Alert Now Signals: numerous widely releasing neuromodulatory systems:
 - Dopaminergic (Ventral Tegmental Area...)
 - Cholinergic (Nucleus Basalis Meynert in Forebrain, Nucleus Tegmentalis Pedunculopontin (PPN))
 - Noradrenergic (Locus Caeruleus)
Enhancing by Alerting

Learning spreads to task-irrelevant stimuli via diffuse Alert Now signal

- Coincidence of diffuse alert signal and task-irrelevant stimulus required

- Potential Sources Of Alert Now Signals: numerous widely releasing neuromodulatory systems:
 - Dopaminergic (Ventral Tegmental Area...)
 - Cholinergic (Nucleus Basalis Meynert in Forebrain, Nucleus Tegmentalis Pedunculopontin (PPN))
 - Noradrenergic (Locus Caeruleus)
Enhancing by Alerting

Learning spreads to task-irrelevant stimuli via diffuse Alert Now signal

- Coincidence of diffuse alert signal and task-irrelevant stimulus required
- Potential Sources Of Alert Now Signals: numerous widely releasing neuromodulatory systems:
 - Dopaminerg (Ventral Tegmental Area...)
 - Cholinerg (Nucleus Basalis Meynert in Forebrain, Nucleus Tegmentalis Pedunculopontin (PPN))
 - Noradrenerg (Locus Caeruleus)
To Create Detector Invariant To A Transformation [Foldiak, 1991],

- Observe Transformation Sequences in the Input
- Choose A Feature Of Interest
- Track (Trace) The Stability Of The Feature Along The Sequence
Invariance From Transformation Sequences

To Create Detector Invariant To A Transformation [Foldiak, 1991],

- Observe Transformation Sequences in the Input
- Choose A Feature Of Interest
- Track (Trace) The Stability Of The Feature Along The Sequence
To Create Detector Invariant To A Transformation [Foldiak, 1991],

- Observe Transformation Sequences in the Input
- Choose A Feature Of Interest
- Track (Trace) The Stability Of The Feature Along The Sequence
Invariance From Transformation Sequences
Trace Rule

Tracing For A Certain Feature over The Sequence [Foldiak, 1991]

- **Building A Trace Of Unit’s Activation:**
 \[\tilde{y}_i(t) = (1 - \delta)\tilde{y}_i(t-1) + \delta y_i(t) \]

- Neurophysiological Mechanism: Self-sustained population activity, or concentration of activity-dependent substance in single cell.

- Learning According To Trace: \[\Delta w_{ij}^{(t)} = \alpha \tilde{y}_i^{(t)}(x_j^{(t)} - w_{ij}^{(t)}) \]

- Only Winner Allowed To Learn: Competition.

- Should Lead To Generalization Of The Specific Stable Feature Across Transformations.
Trace Rule

Tracing For A Certain Feature over The Sequence [Foldiak, 1991]

- Building A Trace Of Unit’s Activation:
 \[\tilde{y}_i(t) = (1 - \delta)\tilde{y}_i(t-1) + \delta y_i(t) \]

- Neurophysiological Mechanism: Self-sustained population activity, or concentration of activity-dependent substance in single cell.

- Learning According To Trace:
 \[\Delta w_{ij}^{(t)} = \alpha \tilde{y}_i^{(t)}(x_j^{(t)} - w_{ij}^{(t)}) \]

- Only Winner Allowed To Learn: Competition.

- Should Lead To Generalization Of The Specific Stable Feature Across Transformations.
Trace Rule

Tracing For A Certain Feature over The Sequence [Foldiak, 1991]

- Building A Trace Of Unit’s Activation:
 \[\bar{y}_i(t) = (1 - \delta) \bar{y}_i(t-1) + \delta y_i(t) \]

- Neurophysiological Mechanism: Self-sustained population activity, or concentration of activity-dependent substance in single cell.

- Learning According To Trace: \(\Delta w_{ij}^{(t)} = \alpha \bar{y}_i(t)(x_j^{(t)} - w_{ij}^{(t)}) \)

- Only Winner Allowed To Learn: Competition.

- Should Lead To Generalization Of The Specific Stable Feature Across Transformations.
Trace Rule

Tracing For A Certain Feature over The Sequence [Foldiak, 1991]

- Building A Trace Of Unit’s Activation:
 \[\bar{y}_i(t) = (1 - \delta)\bar{y}_i(t-1) + \delta y_i(t) \]

- Neurophysiological Mechanism: Self-sustained population activity, or concentration of activity-dependent substance in single cell.

- Learning According To Trace: \[\Delta w_{ij}(t) = \alpha \bar{y}_i(t)(x_j(t) - w_{ij}(t)) \]

- Only Winner Allowed To Learn: Competition.

- Should Lead To Generalization Of The Specific Stable Feature Across Transformations.
Trace Rule

Tracing For A Certain Feature over The Sequence [Foldiak, 1991]

- Building A Trace Of Unit’s Activation:
 \[\tilde{y}_i(t) = (1 - \delta) \tilde{y}_i(t-1) + \delta y_i(t) \]

- Neurophysiological Mechanism: Self-sustained population activity, or concentration of activity-dependent substance in single cell.

- Learning According To Trace: \[\Delta w_{ij}(t) = \alpha \tilde{y}_i(t) (x_j(t) - w_{ij}(t)) \]

- Only Winner Allowed To Learn: Competition.

- Should Lead To Generalization Of The Specific Stable Feature Across Transformations.
Trace Rule
Breaking The Invariance

Hacking Environment’s Statistics

- Building Up Invariant Representations From ”Stabilities”: Using Certain Laws Of The Natural Environment
- If Those Are Manipulated: impact on the representations?
Breaking The Invariance

Hacking Environment’s Statistics

- Building Up Invariant Representations From ”Stabilities”: Using Certain Laws Of The Natural Environment
- If Those Are Manipulated: impact on the representations?
Breaking The Invariance

Assuming Object Identity Is Stable While It is Not [Cox et al., 2005]

- **Hypothesis**: visual system exploit the stability of object identity while saccading to its position.
- **Manipulation**: Replace The Object with Similar One During Temporary Blindness in Course Of Saccade.
- **Test**: after prolonged exposure, look for alterations in recognition performance specific to the objects.
Breaking The Invariance

Assuming Object Identity Is Stable While It is Not [Cox et al., 2005]

- **Hypothesis**: visual system exploit the stability of object identity while saccading to its position.

- **Manipulation**: Replace The Object with Similar One During Temporary Blindness in Course Of Saccade.

- **Test**: after prolonged exposure, look for alterations in recognition performance specific to the objects.
Breaking The Invariance

Assuming Object Identity Is Stable While It is Not [Cox et al., 2005]

- **Hypothesis:** visual system exploit the stability of object identity while saccading to its position.

- **Manipulation:** Replace The Object with Similar One During Temporary Blindness in Course Of Saccade.

- **Test:** after prolonged exposure, look for alterations in recognition performance specific to the objects.
The Experiment [Cox et al., 2005]
The Experiment [Cox et al., 2005]
Result

- Comparing Performance On Swapped and Non-Swapped Positions: Significant Decrease on Swapped Condition
- No Change In Performance By Subjects Who didn’t Perform Saccading (Experiment 3 Group)
- Confusions in Visual Processing Occur after Brief Exposure To Altered Environment (< 1h)
Result

- Comparing Performance On Swapped and Non-Swapped Positions: Significant Decrease on Swapped Condition
- No Change In Performance By Subjects Who didn’t Perform Saccading (Experiment 3 Group)
- Confusions in Visual Processing Occur after Brief Exposure To Altered Environment (< 1h)
Result

- Comparing Performance On Swapped and Non-Swapped Positions: Significant Decrease on Swapped Condition
- No Change In Performance By Subjects Who didn’t Perform Saccading (Experiment 3 Group)
- Confusions in Visual Processing Occur after Brief Exposure To Altered Environment (< 1h)
Conclusion

- Learning Process Involves Coherent Interplay Of Various Low- and High-Level Subsystems.

- Great Part of Perceptual Learning Is Implicit in Nature, it happens out of conscious awareness or access.

- Invariances are reflecting nature of environment, they may be not rigid and finalized, but continually evolving.

- Adapting To Changed Environment Conditions Can Happen Very Fast, If Changes Are Consistent Enough.
Conclusion

- Learning Process Involves Coherent Interplay Of Various Low- and High-Level Subsystems.
- Great Part of Perceptual Learning Is Implicit in Nature, it happens out of conscious awareness or access.
- Invariances are reflecting nature of environment, they may be not rigid and finalized, but continually evolving.
- Adapting To Changed Environment Conditions Can Happen Very Fast, If Changes Are Consistent Enough.
Conclusion

- Learning Process Involves Coherent Interplay Of Various Low- and High-Level Subsystems.
- Great Part of Perceptual Learning Is Implicit in Nature, it happens out of conscious awareness or access.
- Invariances are reflecting nature of environment, they may be not rigid and finalized, but continually evolving.
- Adapting To Changed Environment Conditions Can Happen Very Fast, If Changes Are Consistent Enough.
Conclusion

- Learning Process Involves Coherent Interplay Of Various Low- and High-Level Subsystems.
- Great Part of Perceptual Learning Is Implicit in Nature, it happens out of conscious awareness or access.
- Invariances are reflecting nature of environment, they may be not rigid and finalized, but continually evolving.
- Adapting To Changed Environment Conditions Can Happen Very Fast, If Changes Are Consistent Enough.
Conclusion

- Even on low-level processing stage, adult visual system shows remarkable plasticity potential.
- Learning process involves coherent interplay of various low- and high-level subsystems.
- Great part of perceptual learning is implicit in nature, it happens out of conscious awareness or access.
- Invariances are reflecting nature of environment, they may be not rigid and finalized, but continually evolving.
- Adapting to changed environment conditions can happen very fast, if changes are consistent enough.

Thank you for your attention, focused or diffuse!