MELD file comparison tool

1. Comparing files and directories

2. Git: Merging using Meld
1. Comparing files and directories
In physics and geometry, a \textit{catenary} is the curve that an idealised hanging chain or cable assumes under its own weight when supported only at its ends. Mathematically, the catenary curve is the graph of the hyperbolic cosine function, and in Cartesian coordinates, it is given by the equation:

\[y = a \cosh \left(\frac{x}{a} \right) \]

It is often said that Galileo thought the curve of a hanging chain was parabolic. In his \textit{Discorsi e Dimostrazioni Matematiche}, Galileo notes that the catenary is important because it is the curve that offers the best balance between the weight of the chain and the tension in it. What makes the catenary arch important is its ability to withstand weight. For an arch of uniform thickness, the catenary shape minimises the stress on the material.

\[\text{What makes the catenary arch important is its ability to withstand weight. For an arch of uniform thickness, the catenary shape minimises the stress on the material.} \]
In physics and geometry, a \textit{catenary} is the curve that a \textit{catenary} is the curve that...
2. Git: Merging using Meld
To show difftool and mergetool using Meld

Add topics

29 commits 1 branch 0 releases 1 contributor

Branch: master

Cityflo changed yr to 1995

README.md created readme file

catenary.tex changed yr to 1995

README.md

Meld_demo
\documentclass[11pt]{amsart}
\begin{document}

In physics and geometry, a \textit{catenary} is the curve that an idealised hanging chain or cable assumes under its own weight when supported.

Mathematically, the catenary curve is the graph of the hyperbolic cosine function, and in Cartesian coordinates has the form:
\begin{equation}
y = a \cdot \cosh\left(\frac{x}{a} \right)
\end{equation}

It is often said that Galileo thought the curve of a hanging chain was parabolic. In his \textit{Two New Sciences (1638)}, Galileo says that...

What makes the catenary arch important is its ability to withstand weight. For an arch of uniform density and thickness, supporting only it...

\end{document}
I am editing catenary.tex on my computer, and commit the change to git.

$ git add catenary.tex
$ git commit –m “changed year to 2012”
$ git push https://github.com/Cityflo/Meld_demo.git
I cannot push my new commit to the Github repository.

$ To https://github.com/Cityflo/Meld_demo.git
 ! [rejected] master -> master (fetch first)
error: failed to push some refs to 'https://github.com/Cityflo/
Meld_demo.git'
Updates were rejected because the remote contains work that you do
not have locally. This is usually caused by another repository pushing
to the same ref. You may want to first integrate the remote changes
(e.g., 'git pull ...') before pushing again.
See the 'Note about fast-forwards' in 'git push --help' for details.
I try to pull the latest version first...

```bash
$ git pull
$ remote: Counting objects: 3, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 1), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), done.
From https://github.com/Cityflo/Meld_demo
  18fad18..046d131  master  -> origin/master
Auto-merging catenary.tex
CONFLICT (content): Merge conflict in catenary.tex
Automatic merge failed; fix conflicts and then commit the result.
```
\documentclass[11pt]{amsart}
\begin{document}

In physics and geometry, a \textit{catenary} is the curve that an idealised hanging chain or cable assumes under its own weight when supported.

Mathematically, the catenary curve is the graph of the hyperbolic cosine function, and in Cartesian coordinates has the form:
\begin{equation}
y = a \cdot \cosh(\frac{x}{a})
\end{equation}

It is often said that Galileo thought the curve of a hanging chain was parabolic. In his \textit{Two New Sciences (1638)}, Galileo says that

What makes the catenary arch important is its ability to withstand weight. For an arch of uniform density and thickness, supporting only it

\end{document}
The merge error has to be solved manually.

$ git mergetool
In physics and geometry, a \textit{catenary} is the curve that a hanging chain or cable assumes under its own weight when supported only at its ends. Mathematically, the catenary curve is the graph of the hyperbolic cosine function:

\begin{equation}
 y = a \cosh \left(\frac{x}{a} \right)
\end{equation}

It is often said that Galileo thought the curve of a hanging chain what makes the catenary arch important is its ability to withstand uniform loads.

\documentclass[11pt]{amsart}

In physics and geometry, a \textit{catenary} is the curve that a hanging chain or cable assumes under its own weight when supported only at its ends.

Mathematically, the catenary curve is the graph of the hyperbolic cosine function:
\begin{equation}
 y = a \cosh \left(\frac{\pi}{2a} x \right)
\end{equation}

It is often said that Galileo thought the curve of a hanging chain is a parabola, but this is incorrect. What makes the catenary arch important is its ability to withstand loads without snapping, which is a property of the hyperbolic cosine function.

$ git push https://github.com/Cityflo/Meld_demo.git
$ Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 333 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/Cityflo/Meld_demo.git
 a60df86..64d8f21 master -> master

The push was succesful.
\documentclass[11pt]{amsart}
\begin{document}

In physics and geometry, a \textit{catenary} is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends.

Mathematically, the catenary curve is the graph of the hyperbolic cosine function, and in Cartesian coordinates has the form:
\begin{equation}
 y = a \cosh\left(\frac{x}{a}\right)
\end{equation}

It is often said that Galileo thought the curve of a hanging chain was parabolic. In his \textit{Two New Sciences (1638)}, Galileo says that this is not the case.

What makes the catenary arch important is its ability to withstand weight. For an arch of uniform density and thickness, supporting only its ends, the maximum weight it can support is proportional to its length.

\end{document}
Install on Linux/Unix or Windows:

• Meldmerge.org

Install on Mac (OSX Yosemite):

• https://github.com/yousseb/meld/releases/tag/osx-v1

* Configure .gitconfig file to use Meld as mergetool.
Setting the .gitconfig file to call Meld for the difftool and mergetool:

LINUX/UNIX

```
[diff]
tool = meld
[difftool]
prompt = false
[difftool "meld"]
cmd = meld "$LOCAL" "$REMOTE"

[merge]
tool = meld
[mergetool "meld"]
cmd = meld "$LOCAL" "$MERGED" "$REMOTE" --output "$MERGED"
```

Setting the .gitconfig file to call Meld for the diff tool and mergetool:

MAC OS X (to access .gitconfig: $ git config --global --edit)

```ini
[diff]
tool = meld

[diff]
prompt = false

[mergetool]
tool = meld

[mergetool]
prompt = false

[mergetool]
trustExitCode = true

cmd = open -W -a Meld --args "$LOCAL" "$PWD/$REMOTE"

[mergetool]
trustExitCode = true

cmd = open -W -a Meld --args --auto-merge "$PWD/$LOCAL" "$PWD/$BASE" "$PWD/$REMOTE" --output="$PWD/$MERGED"
```

Source: https://yousseb.github.io/meld/
Setting the .gitconfig file to call Meld for the difftool and mergetool:

Windows (seriously, Windows..?)

```ini
[diff]
tool = meld

[difftool "meld"]
path = C:/Program Files (x86)/Meld/meld/Meld.exe

[prompt] = false

[merge]
tool = meld

[mergetool "meld"]
path = C:/Program Files (x86)/Meld/meld/Meld.exe

[mergetool]
keepBackup = false
```

Source:
https://gist.github.com/kjlubick/5a49a3ae5f39ae3599997
https://www.youtube.com/watch?v=3Qynj8WUwgs