Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Bjørn Bäuchle, Marcus Bleicher

The UrQMD-Group
Based on [arXiv:0810.0488 (nucl-th)]

DPG Spring Meeting
March 17th, 2009
Collaborators

The UrQMD-Group

Marcus Bleicher, Horst Stöcker, Gerhard Burau, Michael Mitrovski, Elvira Santini (HK 33.6), Bjørn Bäuchle, Marlene Nahrgang (HK 55.7), Hannah Petersen, Tim Schuster, Jan Steinheimer-Froschauer (HK 45.4), Sascha Vogel (HK 45.2), Gunnar Gräf (HK 79.1), Katharina Schmidt, Timo Spielmann

Sponsors

Deutsche Telekom Stiftung

Helmholtz Research School Quark Matter Studies

FIAS Frankfurt Institute for Advanced Studies
Interactions with photons

Photons are the gauge bosons of electromagnetic interactions.

- Photons do **not** interact strongly
- Small production cross-section, but small rescattering rate
- Photons from hadronic decays make $\sim 97\%$ of all photons
Photons are the gauge bosons of electromagnetic interactions.

- Photons do **not** interact strongly
- Small production cross-section, but small rescattering rate
- Photons from hadronic decays make \(\sim 97\% \) of all photons

Direct Photons

All the photons that do **not** come from hadronic decays are called **direct photons**.
Previous works

Measurements

- Helios, WA 80, CERES (SPS) — upper limits
- WA 93 (SPS) and STAR (RHIC) — no results (yet)
- WA 98 — first measurements at SPS
- PHENIX (RHIC) — various results
Previous works

Measurements
- Helios, WA 80, CERES (SPS) — upper limits
- WA 93 (SPS) and STAR (RHIC) — no results (yet)
- WA 98 — first measurements at SPS
- PHENIX (RHIC) — various results

Theory
- High p_{\perp}: yields calculated by NLO-pQCD. Important at RHIC- and LHC-energies!
- Hydrodynamics: naturally implement phase transition (QGP ↔ HG): e.g. Turbide, Liu, Vitev, Haglin
- Transport: Study non-equilibrium effects and effects from dilute system: e.g. Dumitru, Huovinen, Li, Bratkovskaya
UrQMD

UrQMD: Ultra-Relativistic Quantum Molecular Dynamics
- Non-equilibrium transport model
- Hadrons and resonances up to $m = 2.2$ GeV
- String excitation and fragmentation
- Cross sections are parametrized via AQM or calculated by detailed balance
- pQCD hard scattering at high energies
- Generates full space-time dynamics of hadrons and strings

Currently implemented channels¹:

\[
\begin{align*}
\pi + \pi & \rightarrow \gamma + \rho, \\
\pi + \eta & \rightarrow \gamma + \pi, \\
\pi + \pi & \rightarrow \gamma + \gamma, \\
\pi + \rho & \rightarrow \pi + \rho
\end{align*}
\]

¹Cross-sections taken from Kapusta, Lichard and Seibert, PRD 44 (1991) 2774
²This cross-section from Xiong, Shuryak and Brown, PRD 46, 3798 (1992)
Why photons

UrQMD + photons

Results

Conclusions

UrQMD + Hydro

- Non-equilibrium initial conditions from UrQMD
- Hydro evolution with hadronic Equation of State that includes all particles from UrQMD; no phase transition
- Isochronous freeze-out
- Rescatterings and decays with hadronic cascade (UrQMD)
- See also Phys. Rev. C 78 (2008) 044901 and talk from Marlene Nahrgang: Wednesday, 18:30, Session HK 55.7

Currently implemented rates\(^3\):

\[
\begin{align*}
\pi + \pi &\rightarrow \gamma + \rho, \\
\pi + K^* &\rightarrow \gamma + K, \\
\rho + K &\rightarrow \gamma + K, \\
K + K^* &\rightarrow \gamma + \pi \\
\end{align*}
\]

\(^3\)Parametrizations taken from Turbide, Rapp and Gale, PRC 69, 014903 (2004)

\(^4\)Includes \(\pi + \rho \rightarrow a_1 \rightarrow \gamma + \pi\)
Comparison of p_{\perp}-spectra

Only using common channels:

$\pi \pi \rightarrow \gamma \rho$

$\pi \rho \rightarrow \gamma \pi$ (incl. a_1)

Transports-γ before hydro

Hydro-γ

Transports-γ after hydro

All γ from hybrid

Pb+Pb @ $E_{\text{lab}} = 158$ A GeV

$b < 4.5$ fm, $|y_{\text{cm}}| < 0.5$

[arXiv:0810.0488 (nucl-th)]
Comparison of p_{\perp}-spectra

- Hybrid and pure cascade model produce similar spectra
- Spectra too low
- Photons show non-thermal spectra at high p_{\perp}
A closer look at high p_{\perp}-photons

![Graph showing the distribution of $dN/d\sqrt{s}$ and $E_{T}/d^{3}\rho_{T}$ for all photons and pure UrQMD.](image)

- $dN/d\sqrt{s}$ for all photons decreases with increasing $\sqrt{s_{\text{coll}}}$.
- $E_{T}/d^{3}\rho_{T}$ for pure UrQMD decreases with increasing p_{\perp}.

Results

Conclusions
A closer look at high p_\perp-photons

- Most photons at high p_\perp come from high-\sqrt{s}-collisions
- Hadronic treatment questionable
Taking ρ off its pole

In channels that produce ρ-mesons: cross-section changes, channels also possible for $\sqrt{s} < m_\rho^0$!

Affects only very low p_\perp^γ
Summary & Conclusions

- Hybrid and pure-transport model yield very similar results
- High-p_\perp dominated by high-\sqrt{s}
- Onpole-/offpole treatment doesn't change spectra
Summary & Conclusions

- Hybrid and pure-transport model yield very similar results
- High-p_\perp dominated by high-\sqrt{s}
- Onpole-/offpole treatment doesn't change spectra

Things to be done:

- Compare rates from cascade and hydro (\Rightarrow Box-Calculation)
- More production channels in both stages
- Different EoS will be compared
- Add photons from initial hard pQCD-Scatterings
Backup-Slides
Cross-Sections and Production Rates

Cascade: Photons are produced in binary collisions acc. to their cross-sections, e.g. for $\pi^\pm \rho^0 \rightarrow \gamma \pi^\pm$: \(^{(5)}\)

\[
\frac{d\sigma}{dt} = \frac{\alpha g^2}{12s p^2}_{\text{c.m.}} \left[2 - s \frac{m^2_{\rho} - 4m^2_{\pi}}{(s-m^2_{\pi})^2} - (m^2_{\rho} - 4m^2_{\pi}) \left(\frac{s-m^2_{\rho}+m^2_{\pi}}{(s-m^2_{\pi})(t-m^2_{\pi})} + \frac{m^2_{\pi}}{(t-m^2_{\pi})^2} \right) \right]
\]

Hydro: Photons are produced at a given temperature acc. to thermal rates. E.g. for $\pi \rho \rightarrow \gamma \pi$: \(^{(6,7)}\)

\[
E \frac{dR}{d^3p} = \left(\frac{\Lambda^2}{\Lambda^2 + E m_{\pi}} \right)^8 T^{2.8} \exp \left(\frac{-(1.461 T^{2.3094} + 0.727)}{(2TE)^{0.86}} + (0.566 T^{1.4094} \frac{E}{T} - 0.9957) \frac{E}{T} \right) \text{fm}^{-4} \text{GeV}^{-2}
\]

... and then boosted with the cell’s velocity.

\(^{(5)}\) See Kapusta, Lichard and Seibert, PRD 44 (1991) 2774

\(^{(6)}\) See e.g. Turbide, Rapp and Gale, PRC 69, 014903 (2004)

\(^{(7)}\) All relevant variables given in GeV; $\Lambda = 1$ GeV.
Photons from the model

Cascade

- Emitted photons may be only a fraction of a photon
- Each collision and channel: 100 photons produced with different Mandelstam t-values and appropriate weight

$$N = \frac{d\sigma^\gamma}{dt} \Delta t / \sigma_{\text{tot}} \Rightarrow \text{less events calculated, better statistics}$$

Hydro

- Take care of proper Lorentz-Transformation (mind Cooper-Frye):
- Generate random $p_\mu u^\mu$ according to thermal rate, then generate \vec{p} so that it yields desired $p_\mu u^\mu$.
- For all cells, every implemented rate: one photon-information (with weight $N = \int \frac{d^3p}{E} \Delta V \Delta t E \frac{dR}{d^3p}$) is created.
Our Model in a nutshell

- Combination of hydrodynamics for high-density part and transport for initial- and final state
- Possibility to study impacts of different dynamics (hydro ⇔ transport) and different physics (QGP ⇔ hadron gas) by varying Equation of State in hydro
- No guesswork involved in initial conditions for hydro
- Possibility to clearly distinguish different channels
- Time-resolution of photon emission
Cross-sections for $\pi\pi \rightarrow \gamma\rho$ I

![Graph showing cross-sections for $\pi\pi \rightarrow \gamma\rho$]
Cross-sections for $\pi\pi \rightarrow \gamma\rho$ II

Mass integrated

Mass fixed at $m_\rho = 770$ MeV

$\pi^\pm\pi^\mp \rightarrow \gamma\rho^0$

$\pi^\pm\pi^0 \rightarrow \gamma\rho^\pm$