Development of Radiation Hard Silicon Sensors for the CBM Silicon Tracking System Using Simulation Approach

S. Chatterji¹, J. M. Heuser¹, A. Lymanets², for the CBM Collaboration
¹GSI, Darmstadt, Germany ²FIAS, University of Frankfurt, Germany

Study of Super-Dense Baryonic Matter with Heavy-Ion Collisions at FAIR/SIS-300

Facility for Anti-proton and Ion Research, Darmstadt, Germany

Heavy-Ion Synchrotron SIS-300:
- magnets: 300 Tm bend
- high-intensity DC beam
 - 10⁹ ions/s at CBM
- max. beam energies:
 - heavy ions: 45 GeV/u
 - protons: 90 GeV

Detector R&D

Double-sided micro-strip detectors
GSI-CIS Erfurt, MSU-RIMST, Moscow.

SYNOPSIS TCAD

3D simulation grid

Charge collection efficiency in double-sided sensors

Simulated IV/CV behavior

Interstrip parameters simulation

Measurements with prototypes

CIS detectors characterized by M. Merkin et al, MSU Moscow

Simulation of signal transmission through low-mass micro-line cables

Structure of analog microcable used in CBM module demonstrators
- 2 signal layers of 14 μm Al, 10 μm Kapton
- Spacer 50 μm Kapton mesh
- Shielding layer
GSI-SE SRTIIE Kharkiv, Ukraine

Strip clusters due to charge sharing of signals (²⁹Si β-particles)

Summary and Outlook

- Silicon Tracking System of the CBM experiment is the central detector for track reconstruction and momentum determination.
- Challenges are: high track densities, high collision rates, low material budget, radiation hardness.
- Detector module R&D program:
 - Radiation tolerant detectors.
 - Module prototypes include:
 - double-sided microstrip sensors, multi-layer analog cable, self-triggering front-end electronics.
 - Microcable electrical simulations using RAPAEL package
 - 3D simulations of double-sided sensors with stereo angle using SYNOPSIS TCAD.
 - Characterization of irradiated sensors.