HBT Radii from UrQMD

Gunnar Gräf
Institut fuer Theoretische Physik
Goethe Universitaet
Frankfurt, Germany

in collaboration with
Marcus Bleicher, Mike Lisa,
Elliot Mount, Hannah Petersen
Outline

Motivation: geometry vs momentum

What is HBT?

Transport model predictions / k_t-dep.

Hybrid model prediction / k_t-dep.

Source eccentricity and tilt

Summary
Expansion patterns

- Usually one measures momenta (or momentum anisotropies) that come from spatial anisotropies.
- HBT allows to infer the geometry from the final state momentum spectra.

Gunnar Graef, Goethe University, HC

Cold Quantum gas, O’Hara, Science 298

QCD hydrodynamics, Kolb, PhD thesis

QGP HG
Micro explosions

Laser induced explosion at National Ignition Facility in Sapphire

Infer the momentum spectrum from geometry
Motivation for HBT studies

Extremely small
Extremely fast → No direct observation

Here: deduce geometry from observed momenta
Bose-Einstein-Statistics leads to short range correlations of Bosons in momentum space

\[
C_2(\vec{p}_1, \vec{p}_2) = \frac{P_2(\vec{p}_1, \vec{p}_2)}{P_1(\vec{p}_1) \cdot P_1(\vec{p}_2)} = 1 + \chi(\vec{p}_2 - \vec{p}_1)
\]

From \(\chi\) one can deduce the features of the source (Imaging, Gauss-Source)

In heavy ion reactions: Pions, Kaons, ...

\[
\Delta r = \frac{\hbar c}{\Delta p} = \frac{197 \text{ MeV/c}}{\Delta p} \text{ fm}
\]
Meaning of the components

- Two-particle interferometry: Photo and duration of the reaction

\[R_{\text{out}} / R_{\text{side}} \text{-ratio is related to the emission duration of the system (no flow, etc)} \]

Pratt-Bertsch ("out-side-long") coordinates are used to extract space and time information of the source.
A predicted feature

Drastic increase of the lifetime due the existence of a mixed phase ($c_s \sim 0 \rightarrow$ long life time)

\[\frac{d_Q}{d_H} = \frac{37}{3} \]

- 10 fold increase of the lifetime in comparison to a calculation w/o phase transition
- Factor 2 increased $R_{\text{out}}/R_{\text{side}}$ ratio

The UrQMD model

UrQMD=Ultra-relativistic quantum molecular dynamics
[H.Petersen et al., arXiv:0805.0567v1 (2008)]

Non-equilibrium transport model
All hadrons and resonances up to 2.2 GeV
String excitation and fragmentation
Cross sections are fitted to available data, parametrized via AQM or calculated by detailed balance
Generates full space-time dynamics of hadrons and strings
Hybrid option to explore various Equations of State
Correlations functions

Generate freezeout phasespace-distribution

Apply Correlation Afterburner (CRAB) [Scott Pratt]

CRAB calculates quantum weights => correlation functions

Correlation functions → HBT radii

\[
C(q, K) = 1 + \lambda \exp(-R_o^2 q_o^2 - R_s^2 q_s^2 - R_l^2 q_l^2 - R_{os}^2 q_o q_s - R_{ol}^2 q_o q_l - R_{sl}^2 q_s q_l)
\]
UrQMD results for FAIR/SPS energies

- kt- dependence
Region of homogeneity: Expectation

low pT particles

high pT particles
UrQMD vs. data @ AGS/FAIR

- Good agreement
- Deviations at small k_T for R_L and R_S

$<11\% \sigma_T$

$<5\% \sigma_T$

$K_T = (p_{y1} + p_{y2}) / 2$
UrQMD @ SPS-NA49

Note the effect of short formation times: more early pressure

<7.2% σ_T
Hybrid Model results
Emission times: hybrid model

- Shift in emission times for different equations of state
- Later emission in the Bag model scenario
- However, here lifetime increases less than factor 2.
Freeze-out effects are small, if hadronic rescattering is included.
HBT radii (EoS effects)

Hydro evolution leads to larger radii, esp. with phase transition

Gunnar Graef, Goethe University, HCBM 2010, Budapest
\(R_O/R_S \) Ratio

- Hydro phase leads to smaller ratios
- Hydro to transport transition does not matter, if final rescattering is taken into account
- EoS dependence is visible, but not as strong as previously predicted (factor of 5)

Data from NA49

\[(Q. \text{ Li et al.}, \text{PLB 674, 111, 2009}) \]
Asymmetries
Kinetic Freezeout

Point of last interaction or production

Free propagation to detector

Gunnar Graef, Goethe University, HCBM 2010, Budapest
The tilt angle

Obtain tilt angle directly from fit to freeze-out data

Au+Au at 8 AGeV, central
Azimuthal HBT

- Tilt angle and eccentricity can be extracted from the model ‘directly’ or using the correlation function (done by Elliot Mount, Mike Lisa)

Gunnar Graef, Goethe University, HCBM 2010, Budapest
Tilt angle

Lisa, Graef, Mount, Petersen, Bleicher, in prep.

Gunnar Graef, Goethe University, HCBM 2010, Budapest
Tilt angle - discussion

- Tilt angle drops with increasing energy (increase in longitudinal extension of source)
- Consistency of RQMD vs UrQMD
- Hybrid model deviates where no data is available
- Consistency between direct extraction and HBT method (green triangles vs line)
Freeze-out eccentricity

Calculate eccentricity directly from the freeze-out coordinates of pions:

\[
\text{eccentricity } \varepsilon = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}
\]

\[
\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2 \quad \text{and} \quad \sigma_y^2 = \langle y^2 \rangle - \langle y \rangle^2
\]
Eccentricities

Lisa, Graef, Mount, Petersen, Bleicher, in prep.

Gunnar Graef, Goethe University, HCBM 2010, Budapest
Eccentricities: Tilted frame...

- Effect of tilt is only important at low energies
- Eccentricities are lower in the hybrid approach
- Comparison between ‘direct’ extraction and the HBT analysis yields good agreement (cf. crosses vs. lines)
Model comparison (tilted frame)

Lisa, Graef, Mount, Petersen, Froderman, Bleicher, in prep.

Gunnar Graef, Goethe University, HCBM 2010, Budapest
Discussion

- All models follow expectations (decrease of ε with E)

- However... data suggests an increase from SPS to RHIC \rightarrow soft expansion, $c_s \sim 0 \rightarrow$ less spherical system (after same time)

- If this is supported by RHIC low energy data it might indicate a soft point!
Summary

- UrQMD and the hybrid model where compared to data at AGS/FAIR/SPS/RHIC
- Good agreement was found (however, QGP scenario not supported from R_o/R_s)
- Eccentricity and source tilt were discussed
- Surprising non-monotonous behavior found in the eccentricity data
 - possible signal for softening!?
 - needs confirmation by STAR data