System Integration
MVD Prototype

T. Tischler, S. Amar-Youcef, M. Deveaux, D. Doering, I. Fröhlich, M. Koziel
J. Michel, C. Müntz, C. Schrader, S. Seddiki, J. Stroth, C. Trageser
and B. Wiedemann

27.09.2010, T. Tischler, CBM Collaboration Meeting, Mamaia, Romania
System Integration - MVD Prototype

Demonstrator (MIMOSA-20)

Prototype (MIMOSA-26)

Final MVD (MimoSIS)

How could the MVD Prototype look like?

Which questions are needed to be answered to put the MVD into the CBM Magnet??

27.09.2010, T. Tischler, CBM Collaboration Meeting, Mamaia, Romania
System Integration - MVD Prototype

MVD Prototype based on MIMOSA-26 sensors

The first station of the MVD Prototype will look like:

- Sensors are tested and in stock
- FPC and read-out electronics is work in progress
- Cooling structures are also available
System Integration - MVD Prototype

Possible sensor layout for MimoSIS:

Dimensions:
- 6 mm in width (3 mm active surface)
- 23 mm in length (20 mm active surface (blue))

First MVD station:
- overall 40 sensors, 10 per ladder, 5 per side

Cooling support for the sensors
CVD
Acceptance of the First Station

ladder

Backside:

71 mm
Possible sensor layout for MimoSIS:

Dimensions:
- 6 mm in width (3 mm active surface)
- 43 mm in length (40 mm active surface (blue))

Feasibility under consideration

Second MVD station:
- Overall 76 sensors, 19 per ladder, 9 (+1) per side

Backside:
- 111 mm
First ansatz for a schematic design of the **first** MVD station, including cooling and support structures:

- Cooling tubes (FEE)
- Read-out cables
- FPC
- FEE
- Sensors
- Cooling support
- Support frame

Dimensions:
- 351 mm (vertical)
- 340 mm (horizontal)
First ansatz for a schematic design of

the **second** MVD station, including cooling and support structures:
System Integration - MVD Prototype

Vacuum vessel including

the **first** (left) and

the **second** (right) station,

also visible support structures to hold the stations and allow them to slide in x-direction (black frame)
Vacuum vessel including both

the first (front) and the second (back) station,

also visible “doors” to open the vessel and replace the stations,
feed-throughs for the read-out cables and the cooling pipes
Complete MVD inside the magnet, including Target, support structures for the vessel and endcaps to close the vessel.
System Integration - MVD Prototype

Front view (downstream)

Vessel for the MVD:
Keep-in-Volume
604 x 1030 x 200 mm³
including Vessel and cables, cooling tubes out side of the vacuum

Vessel, included in simulation
To be discussed:

• Service positions
 – Service positions for the MVD stations needed to shield the sensors against unfocused beam (focusing, conditioning)

• Access to the detectors
 – Access to the detector for fast debugging repair, service
 – Access for mounting, service

• Keep-in-Volume
 – Actual design asks for a Keep-in-Volume of 604 x 1030 x 200 mm³

• Definition of the vacuum vessel
 – Positions and numbers of feed-throughs for the low voltage, cooling, read-out cables