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Examples for SCQFs

Neutron Star Quark Gluon Plasma



Examples for SCQFs

high-T superconductor ultracold Fermi gas

→ interested in:
I thermodynamic properties
I non-equilibrium dynamics (transport coefficients, relaxation

processes, ...)



Fermi gas cloud collision

I repulsive optical potential divides trapped gas into two clouds
I once switched off, the two clouds accelerate and collide

t = 0 ms t = 1 ms t = 3 ms

t = 5 ms t = 6 ms t = 9 ms

→ shock wave formation (2 shock fronts)



Anisotropic expansion
I ultracold Fermi gas released from deformed trapping potential

K.M. O’Hara et al., Science 298 (2002)

t = 100 µs t = 200 µs t = 400 µs

t = 600 µs t = 800 µs t = 1000 µs

→ observe fluid dynamical behavior (elliptic flow)
I coordinate-space anisotropy converted to momentum-space

anisotropy
I perfect to study shear viscosity η and bulk viscosity ζ



Unitary Fermi gas - primer

ultracold atomic Fermi gas studied in trap-experiments:

I macroscopically occupied mixture of atoms of half-integer total spin, e.g. 6Li
I at low density n and low temperature T : details of atomic interaction and atomic

structure not resolved
I atoms describable as the two components of point-like non-relativistic spin-1/2

fermions with (T > TF )

Leff = ψ†
(

ı∂t +
∇2

2m

)
ψ− C0

2
(ψ†ψ)2

I coupling constant C0 ∼ s-wave scattering length a

at low n and T :
→ higher partial waves and range corrections unimportant
→ 2-body s-wave scattering amplitude:

M =
4π

m
1

1/a + ıq

→ in dimensional regularization C0 = 4πa/m
q: relative momentum



Unitary Fermi gas - primer
unitary limit a→ ∞:

I no intrinsic dimensionful parameters; theory scale invariant
I universal s-wave collision cross-section: σ = 4π/q2

I extremely strong interactions; strong correlations even if n is
low

I properties of the gas are universal functions of n and T only,
e.g. η = }n · η̃(T /µ)

dilute regime: r · n1/3 � 1

strongly correlated regime: a · n1/3 � 1

degeneracy occurs for T � TF → inter-particle spacing ∼ k−1
F

for T � TF typical momenta are thermal: pT =
√

2mTkB



Unitary Fermi gas - primer

→ unitary limit achieved by magnetically tuning atoms to a Feshbach resonance

broad Feshbach resonance of 6Li
at B = 832 G

resonances occur as bound states if interatomic potential (hyperfine interaction) is
tuned into resonance with the energy of the two colliding atoms ← magnetic tuning
(possible if magnetic moments of bound state and the 2 unbound atoms different)

→ interaction strength can widely be varied



Elliptic flow measurement

experimental set-up

I 50-50 mixture of 2 lowest 6Li hyperfine
states |F = 1

2 ,M = ± 1
2 〉

I N ' 105 atoms in the cloud
I optical trapping with ultrastable CO2-laser
I magnetic coils: broad Feshbach

resonance at 832 G
I resonant scattering maintained in

expanding gas
I cooling by forced, rapid evaporation in

optical trap
I ultracold: µK-range (T = 0.1 neV)
I barrier height for p-wave scattering in 6Li

is 8 mK → negligible

→ excellent exp. system: widely tunable interaction strengths, densities and
temperatures



Elliptic flow measurement
→ after abrupt release of the cloud, study time-evolution of all 3 cloud radii

(rapid transverse expansion; nearly stationary in axial direction)

I harmonic confinement potential:

V =
1
2

m
(

ω2
x x2 + ω2

y y2 + ω2
z z2
)

with ωx > ωy � ωz

I absorption pictures: 2 cameras

→ time-evolution of transverse aspect ratio
σx /σy

I ballistic, free streaming
I energy-dependent: E (energy per

particle)
I η counteracts differential acceleration
→ expansion rate decreases w/

increasing η



Determination of transport coefficients

E. Elliott et al., PRL 112 (2014)

determine transport coefficients from ex-
pansion data, e.g. by simulating evolu-
tion within fluid dynamics (parameters)

I need to know EoS and initial
conditions (Gaussian density
profile at large T )

caveat: only trap-averaged parameters

αS =
1

N}

∫
d3~x η(~x , t)

→ must assume η → 0 at low n

→ 〈η〉/〈s〉 . 0.4 in normal phase (close to holographic bound); 〈ζ〉 = 0



Reminder - standard fluid dynamics

fluid dynamics = the universal effective description (theory) of
non-equilibrium many-body systems (low energy/frequency, long
time, long wavelength/distance) for the dynamics of conserved and/or
spontaneously broken symmetry variables in classical and quantum
liquids, gases and plasmas

requirement: system relaxes to approximate lo-
cal thermodynamic equilibrium on the time scale
of the observation
competition of time scales:

I τfluid (microscopic) rate of disturbance
relaxation

I τdiff conserved charge relaxation (diffusion,
collective motion)

→ fluid dynamics valid when clear scale separation τfluid � τdiff

breakdown scale: ωfluid = 1/τfluid ∼ Ts/η → fluid dynamics most effective for (almost)
perfect fluids



Reminder - standard fluid dynamics
simple, non-relativistic fluid:

conserved charges are mass density ρ, momentum density
~π, and energy density E = E0 +

1
2 ρ~u2

∂ρ

∂t
+ ~∇ · ~π = 0

∂πi

∂t
+∇j Πij = 0

∂E
∂t

+ ~∇ ·~ E = 0

constitutive relations: currents must be systematically expandable in gradients of fluid
dynamical variables

I ~π = ρ~u → momentum density = mass current (Ward identity; defines ~u)

I stress tensor Πij = Π(0)
ij + δΠij = ρui uj + Pδij + δΠij (rotational and Galilean invariance)

I energy current~ E = ~u(E0 + P) + δ~ E

I ideal fluid dynamics: δΠij = δ~ E = 0 (time reversal invariance; entropy conservation)

I Navier-Stokes fluid dynamics: δΠ(1)
ij = −ησij − ζδij 〈σ〉 with σij = ∇i uj +∇j ui − 2

3 δij 〈σ〉 ,
〈σ〉 = ~∇ ·~u and (δ~ E )(1) = uj δΠij − κ∇i T

I transport coefficients: η, ζ, thermal conductivity κ are parameters

expansion only meaningful if Π(0)
ij � δΠ(1)

ij � δΠ(2)
ij . . .



Regime of applicability of standard fluid dynamics

for compressible fluids (Ma = u/cs ∼ 1) → suitable expansion
parameter is Re−1:

Re−1 =
η

}n
× }

muL
� 1

fluid property flow property

for a flow factor muL ∼ } → hydrodynamics applicable if η/(}n) . 1

nearly perfect fluids exhibit fluid dynamical
behavior on length scales comparable to
microscopic length scales

→ kinetic theory estimate: η ∼ n〈p〉lmfp

Re−1 = Ma · Kn ⇒ Kn = lmfp/L� 1



Kinetic theory (at unitarity)
→ provides simplest microscopic description of a fluid
fluid dynamical equations derivable (long-distance/time limit of kinetics is fluid
dynamics)

Boltzmann-equation for the single-particle distri-
bution function fp(~x , t):(

∂t + (~∇pEp) · ~∇x + (~∇x Ep) · ~∇p

)
fp(~x , t) = C[fp ]

C[fp ] =

Chapman-Enskog expansion: fp = f 0
p + δf 1

p · · · = f 0
p (1 + χp/T ) . . . → C = f 0

p
T C[χp ]

gradient expansion δf n
p = O(∇n) ≡ Knudsen expansion δf n

p = O(Knn)

→ solve order-by-order in the Knudsen number Kn:

I first-order: δΠ(1)
ij = −ησij with η = 15

32
√

π
(mT )3/2 ; Bruun, Smith (2007)

I second-order: δΠ(2)
ij → relaxation time τπ = η/P ; Schäfer (2014)

→ breakdown of kinetic theory for ω > ωmicro ∼ T



Bulk viscosity and conformal symmetry breaking

at unitarity (conformal symmetry): P = 2
3E0 ; ζ = 0 ; Ho (2004), Son (2007)

conformal symmetry breaking in thermodynamics:

1− 2
3
E0

P
=
〈OC〉

12πmaP
∼ 1

3π

(
z

λ

a

)
; OC = C2

0 ψψψ†ψ† contact density

→ impact on ζ:

Dusling, Schäfer (2013)

excitations aquire a momentum-
dependent effective mass ↔ self-
energy (LO in z):

Re Σ(p) ∼
(

z
λ

a

)
T

√
T
Ep

FD

(√
Ep

T

)

Im Σ(p) ∼ zT

√
T
Ep

Erf

(√
Ep

T

)

I bulk viscosity ζ = λ−3

24
√

2π

(
z λ

a

)2
⇒ ζ/η ∼

(
1− 2

3
E0
P

)2



Shear viscosity and conformal symmetry breaking
consider η for a 6= ∞:

η = η∞

(
1 +O

(
λ2

a2

)
+O

(
zλ

a

)
+ . . .

)

medium-effects at O (zλ/a) originate from self-energy, in-medium
scattering

Π(P,q) =

exp.: Elliott et al. (2014) kin.th.: MB, Schäfer (2014)



Local shear viscosity determination - η(n,T )
→ deduce dependence on local n and T from global observables

I very first exp. approaches (inversion of trap-averaged data) Joseph et al. (2014)

whole cloud not a fluid → αS ill defined
at high T

paradoxical fluid dynamical behavior:
constant amount of heating by current from
spatial infinity although no dissipative force ex-
ists for Hubble-flow

→ fluid dynamics breakdown in dilute regime

→ need a reliable treatment of low density corona (”graceful” exit):
I solve full Boltzmann equation; Lattice Boltzmann simulation;

Quantum Monte Carlo; combine fluid dynamics & Boltzmann
equation; Anisotropic fluid dynamics MB, Schäfer (2015)



Anisotropic fluid dynamics

combines a fluid dynamical treatment of the core with a ballistic description of the
corona smoothly

consider fp = f an
p + δf 1

p + . . . with

f an
p = exp

(
µ

Tle
−∑

a

mc2
a

2Ta

)
, Tle = ∏

a
T 1/3

a .

conservation laws & evolution of non-
hydrodynamic d.o.f. Ea=x ,y ,z (in Lagrangian
form):

−nD0

(
Ea

n

)
= δia∇i

(
ui P + uj δΠij

)
+

∆Pa

2τ

∆Pa = Pa − P = n(Ta − T ) , τ = η/P AVH1 hydro code: MB, Schäfer (2015)

I small τ: fast relaxation to Navier-Stokes theory
I large τ: additional conservation laws→ ballistic expansion



Anisotropic expansion in AVH1



Dissipative corrections in AVH1



Conclusions and Outlook

I ultracold Fermi gases provide an excellent playground for
studying strongly coupled/correlated quantum fluids

I at unitarity: nearly perfect fluid
I fluid dynamics provides its ”most effective” description
I (non)elusive goal: unfold local n and T dependence of η

I need a description that ”gracefully” exits fluid dynamics→ AVH1
I spin diffusion can also be studied
I for apples-to-apples comparison: extension to two-fluid system,

restoration of rotational invariance
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