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Chiral Magnetic Effect

In a  B  a misbalance in the population of L/R handed 
fermions leads to an e.m. current 11 to B
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• First seen in EW  (Vilenkin, 80)

• Discussed in the framework of HIC Kharzeev, 
McLerran, Fukushima, Warringa, ’08

• Discussed in AdS/CFT Yee, Landsteiner et a,l, etc

• Studied in the lattice Buividovich et al; M Abramczyk 
et al

• Derived in hydrodynamics Son and Surowka

• Derived in kinetic theory (Son and Yamamoto, 
Stephanov and Yin, CM and Torres-Rincon)

• Observed in Dirac semimetals Kharzeev et al, ‘15

Chiral Magnetic Effect



All these ideas here discussed are relevant for 
condensed matter physics

Discovery of  Weyl semimetals and Weyl 
fermions as quasiparticles  

Hasan et al, ’15;  Weng et al,   



Chiral Transport Equation
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Son and Yamamoto, ’12; Stephanov and Yin,  ‘12
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One can reproduce the chiral anomaly equation 
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In a thermal plasma: take into account both particles/
antiparticles to correctly reproduce the chiral anomaly
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The chiral transport equation can be 
deduced simply by computing (for 

m=0) the first quantum corrections 
to the classical eqs. of motion

Semiclassical chiral transport equation 

FW diagonalization

EFT methods



Foldy-Wouthuysen Diagonalization

• The Dirac eq. for a free fermion mixes 
particles and antiparticles d.o.f.

• FW found a representation where these can 
be separated, through a canonical 
transformation

exact for the free theory

approx. for an interacting theory
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At order O(~0)

HD = UH0U
† = �E + eA0(R)



O(~)At order [Ri, Pj ] = i~�ij

Give a prescription to deal with products of R, P

Keep unitarity; project over the diagonal 

r = P[U(P,R)R U†(P,R)] = R + P(AR) ,

p = P[U(P,R)P U†(P,R)] = P + P(AP )

Rotate all operators 

P(ARi) = �~E[⌃⇥ (P� eA)]i
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Gosselin, Berard and Mohrbach 2007
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In terms of the rotated variables 
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Massless fermions

Semiclassical equations of motion (e.g. right-handed)
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Fermion dispersion law in an B field is modified 
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Linear response analysis

Electromagnetic current  obtained in a thermal
 plasma, with chiral misbalance
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Both pieces (+/-) agree with the non-anomalous/anomalous 

Feynman diagrams computed in the HTL/HDL approximation

Laine, `05
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Kinetic theory provides a framework to treat in a local way also  

the anomalous HTL effects (energy density, etc …)
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Transport theory provides a perfect framework to
 study the dynamical evolution of the system, where 

different anomalous effects can be taken into account

Including collisions, in the RTA
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Solve the dynamics for time scales larger than the 
relaxation time

J = �E+
NsX

s=1

e2s µ5

4⇡2
B



Anomalous Maxwell 
Equations

@B

@t
=

1

�
r2B+

C↵µ5

⇡�
r⇥B� 1

�

@2B

@t2

d(nR � nL)

dt

=
2C↵

⇡

1

V

Z
d

3
xE ·B = �C↵

⇡

dH
dt

C ⌘
NsX

s=1

e2s
e2

Linked dynamical evolution of  magnetic fields and
chiral fermion imbalance 



H(t) =
1

V

Z

V
d

3
xA ·B

Magnetic Helicity Density 
(or Chern-Simons number)

gives a measure of a non-trivial topology of the B lines

gauge invariant if B=0 on @V (or B n=0 )  



Magnetic helicity 
gives a measure of magnetic linkage
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In Fourier modes, using vector polarization vectors  
(e+, e�, k̂)
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it gives account of an asymmetry of L(+)/R(-) polarized 
fields

describing circular polarized waves 



(Integrated) Anomaly Equation 

Expresses  a conservation law of total helicity 
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chiral fermion imbalance can be converted into magnetic 
helicity and vice versa
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helicity flipping rate

We will solve the dynamics for both B and n5 
assuming t ⌧ 1/�f

Note: L/R handed polarized fields evolve differently  with 
fermion chiral imbalance! 

(circular dichroism) 



Small frequencies ! ⌧ �

Analytical solutions can be found 
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Assume an initial monochromatic helicity
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Assume initial monochromatic B, but no initial helicity

H(t) = 2
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At short t the helicity grows! 

with 3 FM

(no chiral instability)



Large frequencies ! � �

Only analytical solutions for constant chiral imbalance 
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Monochromatic B 

� = 5MeV

k0 = 100MeV

T = 225MeV

R = 10 fm



Several modes: interference 

k0 = 100, 200, 300MeV

All modes decay at 

t ⇠ 1/� ⇠ 40 fm



Applications to QGP
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Topological properties of QCD

might create a chiral fermion 
imbalance 

Kharzeev

Ground state of  QCD: different vacua with non-Abelian Chern Simons 
number



Helicity flipping rate 

 We can safely ignore it in HIC

We have computed rates associated to Compton scattering
 (with non vanishing mass) 
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 Toy model

Sphere R = 10 fm

n5 = NcNf
µ5
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Magnetic field of Gaussian shape 
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e|B0| = m2
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k0 = 100MeV ,  = 40MeV



k0 = 200MeV ,  = 40MeV
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Generation of fermion 
chiral imbalance



Anomalous hydrodynamics for HIC

The effects just discussed should have an impact on the (anomalous) 
hydrodynamics relevant for HIC 

Look into the azimuthal charged particle distribution functions
the existence of these effects would result in the presence of

P-odd harmonics. Study correlations



Conclusions

• Chiral transport equation includes quantum 
corrections that allow us to study anomalous 
effects, such as the CME; needed for NED

• Anomalous Maxwell’s equations: magnetic 
helicity and chiral fermion imbalance linked

• HIC and QGP: presence of chiral imbalance 
results in generation of magnetic helicity; this 
should affect the event-by-event 
hydrodynamics 


