Resonances – hadronic interactions – system size dependence

Christina Markert University of Texas at Austin

- Hadronic Phase
- ALICE K(892) + Φ(1020)
 - EPOS + UrQMD
- p-Pb data (medium ?)

Phase diagram of nuclear matter (QCD)

2T(time and temperature) of hadronic medium

Resonance reconstruction

Resonance signals and background

Resonances at chemical freeze-out (Pb-Pb)

 $\phi(1020)$ close to chemical freeze-out model (T= 164 MeV) K* yield lower than predicted by chemical freeze-out model

Resonance ratio in Pb-Pb collisions (ALICE)

Resonances in EPOS (+UrQMD)

AG Knospe, CM, K Werner, J Steinheimer, M Bleicher

Count resonances:

1.) EPOS + UrQMD OFF (~ 168 MeV)

from core + corona contribution core ~ thermal distribution

2.) EPOS + UrQMD ON

- follow decay particles in hadronic medium
- count resonance when all decay particles do not interact (elastic or pseudo-elastic)

Resonance	decay channel	branching ratio	lifetime (fm/c)
$ ho(770)^{0}$	$\pi^{+} + \pi^{-}$	1	1.335
$K^{*}(892)^{0}$	$\pi^- + K^+$	0.67	4.16
$\phi(1020)$	$K^{+} + K^{-}$	0.489	46.26
$\Delta(1232)^{++}$	$\pi^+ + p$	1	1.69
$\Sigma(1385)^+$	$\pi^+ + \Lambda$	0.870	5.48
$\Sigma(1385)^-$	$\pi^- + \Lambda$	0.870	5.01
A(1520)	$K^- + p$	0.225	12.54
$\Xi(1530)^{0}$	$\pi^+ + \Xi^-$	0.67	22

Resonance ratios (EPOS+UrQMD)

AG Knospe, CM, K Werner, J Steinheimer, M Bleicher

Comparison to Blast-Wave

BW from p,K and π , yield K*(PbPb) = K(PbPb) x K*(pp)/K(pp) (ϕ)

Re-scattering \rightarrow K* signal loss in low p_T region in central collision

EPOS + UrQMD (OFF and ON)

- hadronic phase

EPOS + UrQMD ON describes K* suppression in low p_T region

Momentum spectra – Data – EPOS+UrQMD

$p/\phi(1020 \text{ ratio (same mass)})$

$\phi(1020)/p$ ratio (same mass)

Same mass: Looks like same radial flow effect in central Pb-Pb collisions, but not in peripheral collisions

 \rightarrow different production mechanism in peripheral collisions ?

φ(1020)/p ratio (same mass)

but not in peripheral collisions

 \rightarrow different production mechanism in peripheral collisions ?

$\phi(1020)/p$ ratio (same mass)

 \rightarrow Hadronic phase has different contributions to momentum spectrum

Change of mean transverse momentum

- Scattering of decay daughters (resonances) (decrease low p_T)
- Directed flow (increase high p_T)
- Feed down from resonances and weak decays (increase high $p_{\rm T})$
- Annihilation (decrease low p_T)

Mean transverse momentum in Pb-Pb (0-5%)

Radial flow β and Kinetic freeze-out T_kin

$$< p_T > \sim T_eff = T_kin + \frac{1}{2} m < \beta > 2$$

Mean transverse momentum Pb-Pb (0-5%)

Radial flow β and kinetic freeze-out T_kin

 $T_{eff} = T_{kin} + \frac{1}{2} m < \beta > 2$

Mean transverse momentum Pb-Pb (0-5%)

 $T_{eff} = T_{kin} + \frac{1}{2} m < \beta > 2$

Hadronic phase changes $< p_T >$ differently (feed-down, radial flow) \rightarrow Need to understand contribution from hadronic phase

Mean transverse momentum Pb-Pb (0-5%)

Radial flow β and kinetic freeze-out T_kin

 $T_{eff} = T_{kin} + \frac{1}{2} m < \beta > 2$

Hadronic phase changes $< p_T >$ differently (feed-down, radial flow,...) \rightarrow Need to understand contribution from hadronic phase

Lower energies

Resonance ratios (K*/K) vs energy

RHIC: Hadronic lifetime > 4-5 fm/c (in central collisions) Fireball lifetime ~ 10 fm/c \rightarrow partonic lifetime ~ 5 fm/c CM, G. Torrieri and J. Rafelski, hep-ph/0206260

Larger resonance suppression at SPS and LHC (More re-scattering)

Resonance ratios vs centrality

More particles produced at LHC energies than at RHIC energies \rightarrow larger volume, lower kinetic freeze-out temperature

p-Pb collisions

p-Pb collisions at 5.02 TeV (ALICE)

2013 data set for p-Pb at $Vs_{NN} = 5.02 \text{ TeV}$ K*⁰ spectra measured in $0 < p_T < 15 \text{ GeV}/c$ ϕ measured in $0.3 < p_T < 16 \text{ GeV}/c$

p-Pb collisions at 5.02 TeV (ALICE)

p/ϕ ratio (p-Pb compared to Pb-Pb collision)

p/
 pration in p-Pb 0-5% is similar to 60-80% Pb-Pb Do we have a medium in p-Pb collisions ?

p-Pb (mean transverse momentum vs centrality)

Steeper increase of $<p_{T}>$ for smaller systems is observed for stable particles as well (PLB 727 (2013) 371–380) \rightarrow Same trend, but maximum is different

ALI-PREL-83903

Is there a baryon/meson difference, or do resonances not follow mass ordering?

Conclusion

- Extended hadronic medium in A+A collisions
- Changes resonance yield and spectra.
- Changes spectra of ground state particles
- \rightarrow need to understand contribution from hadronic phase

 High multiplicity p-Pb collisions show onset of extended hadronic medium

RAA (nuclear modification factor)

High-p_T (>8GeV/c):

no flavor dependence of light hadrons suppression

Intermediate-p_T (2-8 GeV/c):

- Larger suppression for $\phi(1020)$ than for proton
- Mass scaling \rightarrow formation time dependence of energy loss
- Do we have meson baryon scaling ?

Regeneration might increase elliptic flow

Influence of resonances

What happened to corrections/fluctuations after Inelastic scattering into another resonance ?

Important to measure resonances
 and use microscopic models (hadronic phase)
 → influence of resonances on other signatures

$\phi(1020)/p$ ratio (same mass)

Same mass, same radial flow effect in central Pb-Pb collisions, but not in peripheral collisions

→ different production mechanism in peripheral collisions ?