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The goal...

... is to understand the phase structure and the phase diagram of QCD
theoretically and experimentally.

Make the connection between QCD thermodynamics (LQCD) and heavy-ion collisions.

https://news.uic.edu/collider-reveals-sharp-change-from-quark-soup-to-atoms



From the theory side...
• Lattice QCD calculations:

Wuppertal-Budapest (2002)
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+ newer approaches to circumvent the sign problem!

• Functional methods of QCD:

C. Fischer, J. Luecker, PLB718 (2013) T. Herbst, J. Pawlowski, BJ. Schaefer PRD88 (2013)



From the experimental side...
• One of the main goals of heavy-ion collisions is to understand the phase

structure of hot and dense strongly interacting matter.

• Can we experimentally produce a deconfined phase with colored degrees of
freedom?

• What are the properties of this phase?

• What is the nature of the phase transition between deconfined and hadronic
phase?



Challenges for the BES II

• Need good dynamical models.

• Need good input.

• Need good observables.

• Need good data.



Challenges for the BES II

• Need good dynamical models.
Initial state, coupling to FD, propagation of fluctuations, coupling to hadrons, ...

• Need good input.
Equation of state, transport coefficients, ...

• Need good observables.
Large scale simulations, sensitivity analysis, statistical tools, ...

• Need good data.
Efficiency corrected, smaller error bars, 14.5 GeV, different particle species, ...



Dynamics of heavy-ion collisions

Systems created in heavy-ion collisions
are

• short-lived,

• spatially small,

• inhomogeneous,

• and highly dynamical!

plot by H. Petersen, madai.us

Indications that we might still be able to learn about thermodynamic properties:

• success of fluid dynamics (⇒ local thermalization) with input from LQCD (EoS)

• success of statistical model and HRG analysis of particle yields and fluctuations
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Phase transitions in fluid dynamics

• Conceptually, studying phase transitions in fluid dynamics is really simple!

• ⇒ Just need to know the equation of state and transport coefficients!
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Phase transitions in fluid dynamics

• Conceptually, studying phase transitions in fluid dynamics is really simple!

• ⇒ Just need to know the equation of state and transport coefficients!
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• No clear sensitivity on the equation of state in observables.

• BUT at the phase transition: fluctuations matter! Including fluctuations in fluid
dynamics is more challenging...



Fluctuations at the phase transition
At a critical point

• correlation length of fluctuations of the order parameter diverges ξ →∞
• fluctuations of the order parameter diverge: 〈∆σn〉 ∝ ξα with higher powers of

divergence for higher moments

• mean-field studies in Ginzburg-Landau theories, beyond mean-field:
renormalization group

• relaxation time diverges⇒ critical slowing down!
⇒ fluctuations in equilibrated systems!

... and a first-order PT:

• at Tc coexistence of two stable thermodynamic phases

• metastable states above and below Tc ⇒ supercooling and -heating

• nucleation and spinodal decomposition in nonequilibrium

• domain formation and large inhomogeneities
⇒ fluctuations in nonequilibrium!

... but also at the crossover:

• remnant of the O(4) universality class in the chiral limit.
⇒ fluctuations in equilibrated systems!

Ref. by many people: M. Stephanov, E. Shuryak, K. Rajagopal, L. Csernai, J. Randrup, I. Mishustin, C. Sasaki, B. Friman, K. Redlich et al.



The Kurtosis

The kurtosis is a measure of the deviation of fluctuations from Gaussian statistical

fluctuations.

〈∆Xi∆Xj∆Xk ∆Xl〉 ∼〈∆Xi∆Xj〉〈∆Xk ∆Xl〉
+〈∆Xi∆Xk〉〈∆Xj∆Xl〉
+〈∆Xi∆Xl〉〈∆Xj∆Xk〉

⇒ 〈∆X 4〉 − 3〈∆X 2〉2 = 0 in the Gaussian approximation.

compare to Binder cumulant for eg. 2d Ising
model:

U = 1−
〈M4〉
〈M2〉2

= 0 +O(1/V ) in symmetric phase
= U∗ = 2/3 at T = Tc
= 2/3 +O(1/V ) in the broken phase

T. Preis et al., JCP228 (2009)



Kurtosis in lattice QCD

fluctuations of conserved charges B, Q, S can be expressed in terms of generalized
susceptibilities

χBQS
ijk =

∂ i+j+k (p/T 4)

∂µ̂i
B∂µ̂

j
Q∂µ̂

k
S

∣∣∣∣∣
µ=0

;
p

T 4
=

ln Z
VT 3

, µ̂ =
µ

T

kurtosis κB = χB
4 /(χB

2 )2 → studied as κBσ
2
B = χB

4 /χ
B
2 with variance σ2

B = χB
2

at zero density:

BNL-Bielefeld Coll., F. Karsch, BNL-meeting WB Coll., R. Bellwied et al., 1507.04627



Kurtosis in lattice QCD - finite baryon density

• Taylor expansion:
(for µS = µQ = 0)

κBσ
2
B =

χB
4 + 1

2χ
B
6 µ̂

2
B + . . .

χB
2 + 1

2χ
B
4 µ̂

2
B + . . .

requires knowledge of 6th-order
susceptibility
valid within radius of convergence of ln Z -
Taylor expansion

(m2 = T2κBσ
2
B )

R.V. Gavai, S. Gupta, PLB 696, 459 (2011)

• strong coupling lattice QCD:
chiral limit calculation of
netbaryon-number fluctuations
oscillatory behavior in higher-order ratios
around 2nd-order phase transition
boundary

T. Ichihara et al., 1507.04527



The Kurtosis in transport models

• Transport models take the microcanonical nature of individual particle scatterings
into account.

• Baryon-number conservation limits fluctuations of net-baryon number.

Pµ(N,C) = N (µ,C)e−µ
µN

N!
on [µ− C, µ+ C]

µ: the expectation value of the original Poisson distribution, N (µ, C): normalization factor, C > 0: cut parameter

C = α
√
µ

(
1−

(
µ

Ntot

)2
)

with α = 3, Ntot = 416.

• An increase of the average
net-baryon number does not lead to
stronger fluctuations.

• At the upper limit of Ntot = 416 the
distribution changes to a δ-function
(K eff
δ = 0).

MN et al. Eur.Phys.J. C72 (2012)
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The Kurtosis in UrQMD

• Same qualitative behavior of the net-baryon kurtosis as expected from the toy
model.

• For small net-baryon numbers in the acceptance, the values of net-baryon,
net-proton and net-charge kurtosis are compatible with values of 0− 1.

A. Bzdak et al. PRC87 (2013)
>
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• Much larger effect than expectation from binomial distribution⇒ volume
fluctuations?

• Recent UrQMD calculations by J. Steinheimer give the same result with much
smaller error bars!



The Kurtosis in UrQMD

• adapting the rapidity window to fix
the mean net-baryon number

• net-baryon effective kurtosis does
not show an energy dependence
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The Kurtosis in thermal models + critical fluctuations

• Sigma field fluctuations: κ4 = 〈δσ4〉c = 6T
V

(
2(λ3ξ)2 − λ4

)
ξ8 M. Stephanov, PRL102 (2009)

• Sigma field couples to the protons via: gppσp̄ ⇒ mp → mp + gp∆σ

⇒ Fluctuations in net-protons: 〈(δNp−p̄)4〉c = 〈(∆Np−p̄)4〉c + 〈(Vδσ)4〉c · I4
p−p̄ .

√
s dependence of the correlation
length from 3d Ising model:

net-proton, HRG + critical fluctuations
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• Possibility to study resonance decay + regeneration and isospin randomization
effects!

work in progress with M. Bluhm (NCSU)



Nonequilibrium chiral fluid dynamics (NχFD)

IDEA: combine the dynamical propagation of fluctuations at the phase transition with
fluid dynamical expansion!

(model-independent is nice, but in the end some real input is needed...)

• Langevin equation for the sigma field: damping and noise from the interaction
with the quarks

∂µ∂
µσ +

δU
δσ

+ gρs + η∂tσ = ξ

• Phenomenological dynamics for the Polyakov-loop

η`∂t`T 2 +
∂Veff

∂`
= ξ`

• Fluid dynamical expansion of the quark fluid = heat bath, including
energy-momentum exchange

∂µTµνq = Sν = −∂µTµνσ , ∂µNµq = 0

⇒ includes a stochastic source term!

MN, S. Leupold, I. Mishustin, C. Herold, M. Bleicher, PRC 84 (2011); PLB 711 (2012); JPG 40 (2013)
C. Herold, MN, I. Mishustin, M. Bleicher PRC 87 (2013); NPA925 (2014), C. Herold, MN, Y. Yan, C. Kobdaj JPG 41 (2014)



Dynamical slowing down
Phenomenological equation: d

dt mσ(t) = −Γ[mσ(t)](mσ(t)− 1
ξeq(t) )

with input from the dynamical universality class⇒ ξ ∼ 1.5− 2.5 fm
B. Berdnikov and K. Rajagopal, PRD 61 (2000))

G(r) =

∫
d3xd3y〈σ(x)− σ0〉〈σ(y)− σ0〉

∼ exp(−r/ξ)

Assume σ0 is the volume averaged field.

From the curvature of Veff :

〈ξ2〉 = 〈1/m2
σ〉 =

〈(
d2Veff

dσ2

)−1〉
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Definition of ξ in inhomogeneous systems involves averaging!

⇒ Similar magnitude of ξ ∼ 1.5− 3 fm!



Dynamics versus equilibration

• Static box with temperature quench to T < Tc .

• Fluctuations of the order parameter:
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• Strong enhancement of the intensities for a first-order phase transition during the
evolution.

• Strong enhancement of the intensities for a critical point scenario after
equilibration.

C. Herold, MN, I. Mishustin, M. Bleicher PRC 87 (2013)



Trajectories and isentropes at finite µB

Isentropes in the PQM model
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• Fluid dynamical trajectories similar to the isentropes in the crossover region.

• No significant features in the trajectories left of the critical point.

• Right of the critical point: trajectories differ from isentropes and the system
spends significant time in the spinodal region! ⇒ possibility of spinodal
decomposition!



Bubble formation in net-baryon density

first-order phase transition
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C. Herold, MN, I. Mishustin, M. Bleicher, arxiv:1304.5372



Bubble formation in net-baryon density

Fourier-decomposition of nB(x , y)
→ quantifies strong enhancement of first-order
PT versus critical point/crossover.

not (yet) in momentum space!
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Can we expect experimental evidences for the first-order phase transition from bubble
formation?

• Do the irregularities survive when a realistic hadronic phase is assumed?

• A strong pressure could transform the coordinate-space irregularities into
momentum-space Fourier-coefficients of baryon-correlations⇒ enhanced higher
flow harmonics at a first-order phase transition? Very eos dependent!

work in progress with C. Herold



EoS: PQM versus QH
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• Below µc , p ≈ 0 in PQM, while it still
decreases in HQ model and p < 0 can
arise in PQM!

• Several eos lead to similar pressures
at µB ≈ 0, but differ at large µB .

• With coexistence between dense
quark matter and compressed nuclear
matter (HQ-EoS) : ∂pc/∂T < 0

• From effective models, like PNJL,
PQM etc.: ∂pc/∂T > 0 J. Steinheimer, J. Randrup, V. Koch PRC89 (2014)



SU(3) chiral quark-hadron model
• Hadronic SU(3) non-linear sigma model including quark degrees of freedom

L =
∑

i

ψ̄i (iγµ∂µ − γ0giωω −Mi )ψi + 1/2(∂µσ)2 − U(σ, ζ, ω)− U(`)

and effective masses generated by

Mq = gqσσ + gqζζ + M0q + gq`(1− `)

MB = gBσσ + gBζζ + M0B + gqB`
2

V. Dexheimer, S. Schramm, PRC81 (2010); M. Hempel, V. Dexheimer, S. Schramm, I. Iosilevskiy PRC88 (2013)

• hadrons are included as quasi-particle degrees of freedom

• yields a realistic structure of the phase diagram and phenomenologically
acceptable results for saturated nuclear matter:
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PQM vs. QH model - stability of droplets

PQM EoS

QH EoS

• Dynamical and stochastic droplet formation at the phase transition and
subsequent decay in the hadronic phase.



PQM vs. QH model - moments of netbaryon density
Define normalized moments of the net-baryon density distribution as:

〈nN〉 =

∫
d3xn(x)NPn(x) with Pn(x) =

n(x)∫
d3xn(x)
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• Infinite increase in the PQM.

• Increase in the HQ model around the phase transition followed by a rapid
decrease due to pressure in the hadronic phase!

• REMEMBER: We started with smooth initial conditions and all inhomogeneities
are formed dynamically!



And the critical point?

• At µB 6= 0 σ mixes with the net-baryon density n (and e and ~m)

• In a Ginzburg-Landau formalism:

V (σ, n) =

∫
d3x(

∑
m

(amσ
m + bmnm) +

∑
m,l

cm,lσ
mnl )− hσ − jn

• V (σ, n) has a flat direction in (aσ, bn) direction

• Equations of motion (including symmetries in V (σ, n)):

∂2
t σ = −ΓδV/δσ + ...

∂t n = γ~∇2δV/δn + ...

• two time scales (with D → 0 at the critical point)

ω1 ∝ −iΓa

ω2 ∝ −iγD~q2

• The diffusive mode becomes the critical mode in the long-time dynamics. These
fluctuations need to be included at the critical point!

H. Fuji, M. Ohtani PRD70 (2004); M. Stephanov, D. Son PRD70 (2004)



Fluid dynamical fluctuations

Conventional fluid dynamics propagates thermal averages of the energy density,
pressure, velocities, charge densities, etc.

However, ...

• ... already in equilibrium there are thermal fluctuations

• ... the fast processes, which lead to local equilibration also lead to noise!

Conventional ideal fluid dynamics:

Tµν = Tµνeq

Nµ = Nµeq
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Conventional viscous fluid dynamics:
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Fluid dynamical fluctuations

Conventional fluid dynamics propagates thermal averages of the energy density,
pressure, velocities, charge densities, etc.

However, ...

• ... already in equilibrium there are thermal fluctuations

• ... the fast processes, which lead to local equilibration also lead to noise!

Stochastic viscous fluid dynamics:

Tµν = Tµνeq + ∆Tµνvisc + Ξµν

Nµ = Nµeq + ∆Nµvisc + Iµ



Fluid dynamical fluctuations

The noise terms are such that averaged quantities exactly equal the conventional
quantities:

〈Tµν〉 = Tµνeq + ∆Tµνvisc with 〈Ξµν〉 = 0

〈Nµ〉 = Nµeq + ∆Nµvisc with 〈Iµ〉 = 0

The two formulations will, however, differ when one calculates correlation functions:

〈Tµν(x)Tµν(x ′)〉
〈Nµ(x)Nµ(x ′)〉



Fluid dynamical fluctuations

In linear response theory the retarded correlator

• 〈Tµν(x)Tµν(x ′)〉 gives the viscosities and

• 〈Nµ(x)Nµ(x ′)〉 the charge conductivities

via the dissipation-fluctuation theorem (Kubo-formula)!

It means that when dissipation is included also fluctuations need to be included!

CAUTION: If nonlinearities are included fluid dynamical fluctuations contribute to the
transport coefficients!

⇒ absolut lower limit for the effective viscosity!

⇒ non-analytic contribution to τπ , breakdown of gradient expansion!

P. Kovtun, G. D. Moore, P. Romatschke, PRD84 (2011); C. Chafin, T. Schäfer, PRA87 (2013); P. Romatschke, R. E. Young, PRA87 (2013)



Fluid dynamical fluctuations
• Linearized fluid dynamical equations: small fluctuations ē + δe, p̄ + δp and δv i

with: δT 00 = δe and δT ij = mi = (ē + p̄)v i = w̄v i

∂t m⊥ + η/w̄k2m⊥ = 0

∂tδe + ik ·m|| = 0

∂t m|| + iv2
s kδe + γv k2m|| = 0

• retarded Green’s function for δe and m||:

Gret
ab (ω, k) =

w̄
ω2 − v2

s k2 + iωγsk2

(
k2 ω|k|
ω|k| v2

s k2 − iωγsk2

)
• including the transverse momentum density:

Gret
mi ,mj

(ω, k) =

(
δij −

ki kj

k2

)
ηk2

iω − γηk2
+

ki kj

k2

w̄(v2
s k2 − iωγsk2)

ω2 − v2
s k2 + iωγsk2

• Kubo-formulas for viscosities:

η = −
ω

2k2

(
δij −

ki kj

k2

)
=Gret

mi mj
(ω, k→ 0)

ζ +
4
3
η = −

ω3

k4
=Gret

ee (ω, k→ 0)



Fluid dynamical fluctuations

∂

∂µx

∂

∂µx′
〈Ξµ0(x)Ξµ0(x ′)〉S = −

∂

∂µx

∂

∂µx′
〈Tµ0(x)Tµ0(x ′)〉S

=

∫
dω

2π

∫
d3k

(2π)3
eik(x−x′)e−iω(t−t′)×

×

ω2GS
ee(ω, k)︸ ︷︷ ︸

FDT

− 2ω|k|GS
em||

(ω, k)︸ ︷︷ ︸
FDT

+ k2GS
m||m||

(ω, k)︸ ︷︷ ︸
FDT


GS

ab(ω, k) = −
2T
ω
=Gret

ab (ω, k)

= 0

∂

∂µx

∂

∂µx′
〈Ξµi (x)Ξµj (x ′)〉S = − ∂

∂µx

∂

∂µx′
〈Tµi (x)Tµj (x ′)〉S

= 2T
[(
ζ +

4
3
η

)
∂i∂j + η(δij∇2 − ∂i∂j )

]
δ4(x − x ′)

Then boost to arbitrary frame:



Fluid dynamical fluctuations

Tµν = Tµνeq + ∆Tµνvisc + Ξµν

Nµ = Nµeq + ∆Nµvisc + Iµ

with

〈Ξµν(x)Ξαβ(x ′)〉 = 2T [η(∆µα∆νβ + ∆µβ∆να) + (ζ − 2/3η)∆µν∆αβ ]δ4(x − x ′)

• In second-order fluid dynamics there are relaxation equations for Ξµν :

uγ∂γΞ〈µν〉 = −
Ξµν − ξµνgauss

τπ

• In white noise approximation and ignoring bulk viscosity (ζ = 0):

〈ξµνgauss(x)ξαβgauss(x ′)〉 = 4Tη∆µναβδ(4)(x − x ′)



Fluid dynamical fluctuations

• In a numerical treatment→ discretization: 〈ξ2〉 ∝ 1
∆V

• ⇒ large fluctuations from cell to cell⇒ coarse-graining, smearing, etc. compare
to expectations from equilibrium and MC kinetic theory!

• Example: non-relativistic
Navier-Stokes + fluctuations

• 1d, dilute gas, periodic boundary
conditions

J. Bell, A. Garcia, S. Williams, PRE76 (2007)

• Different algorithms treat fluctuations differently, third-order methods seem to
work best.



Fluid dynamical fluctuations

• Static box with periodic boundary conditions in relativistic 3 + 1d fluid dynamics
based on 3 + 1d viscous fluid dynamical code by Y. Karpenko.

• Noise correlated over 1 fm3

time evolution of the variance 〈δe2〉:
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〈δe(x)δe(x + dx)〉 correlation function:
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• Average energy(-momentum) conserved within 5%.

• Variance of the energy density fluctuations are approximately 30− 40% of what
is expected in a grandcanonical ensemble.

work in progress with M. Bluhm and Th. Schäfer (NCSU)



Conclusions

• Fluctuation data from heavy-ion collisions at finite µB can only be understood
with dynamical models of the phase transition!

• In NχFD, effects like critical slowing down and droplet formation can be observed.

• PQM-like EoS do not include pressure in hadronic phase, droplets remain stable.

• In HQ-like EoS: droplets form dynamically at the phase transition, then decay.

• Some more effort is needed for studying event-by-event critical fluctuations...

• Next steps: particle production in NχFD and (net-baryon) fluid dynamical
fluctuations.



backup



Net-baryon number distribution in UrQMD

• central Pb+Pb collisions at
Elab = 20AGeV

• fit to a Poisson distribution

• shoulders are enhanced

• tails are cut

=⇒ decrease from K eff
Poisson = 1 to

K eff
UrQMD = −22.2
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Comparison
• Nonequilibrium construction of the EoS from QGP and hadronic matter:
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• Significant amplification of initial density irregularities

plot by V. Koch

• BUT: deterministic evolution of the system⇒ No inhomogeneities for smooth
initial conditions!


