Dynamical Modeling of Fluctuations at the QCD Phase Transition in Heavy-Ion Collisions

Marlene Nahrgang

Duke University

Symposium on Non-equilibrium Dynamics, Sicily 2015

The goal...

... is to understand the phase structure and the phase diagram of QCD theoretically and experimentally.

Make the connection between QCD thermodynamics (LQCD) and heavy-ion collisions.

https://news.uic.edu/collider-reveals-sharp-change-from-quark-soup-to-atoms

From the theory side...

• Lattice QCD calculations:

+ newer approaches to circumvent the sign problem!

C. Fischer, J. Luecker, PLB718 (2013)

T. Herbst, J. Pawlowski, BJ. Schaefer PRD88 (2013)

From the experimental side...

• One of the main goals of heavy-ion collisions is to understand the phase structure of hot and dense strongly interacting matter.

- Can we experimentally produce a deconfined phase with colored degrees of freedom?
- What are the properties of this phase?
- What is the nature of the phase transition between deconfined and hadronic phase?

Challenges for the BES II

- Need good dynamical models.
- Need good input.
- Need good observables.
- Need good data.

Challenges for the BES II

• Need good dynamical models.

Initial state, coupling to FD, propagation of fluctuations, coupling to hadrons, ...

Need good input.

Equation of state, transport coefficients, ...

Need good observables.

Large scale simulations, sensitivity analysis, statistical tools, ...

Need good data.

Efficiency corrected, smaller error bars, 14.5 GeV, different particle species, ...

Dynamics of heavy-ion collisions

Systems created in heavy-ion collisions are

- short-lived,
- spatially small,
- inhomogeneous,
- and highly dynamical!

plot by H. Petersen, madai.us

Indications that we might still be able to learn about thermodynamic properties:

- success of fluid dynamics (\Rightarrow local thermalization) with input from LQCD (EoS)
- success of statistical model and HRG analysis of particle yields and fluctuations

Dynamics of heavy-ion collisions

Systems created in heavy-ion collisions are

- short-lived,
- spatially small,
- inhomogeneous,
- and highly dynamical!

plot by H. Petersen, madai.us

Indications that we might still be able to learn about thermodynamic properties:

- success of fluid dynamics (⇒ local thermalization) with input from LQCD (EoS)
- success of statistical model and HRG analysis of particle yields and fluctuations

Phase transitions in fluid dynamics

- Conceptually, studying phase transitions in fluid dynamics is really simple!
- \Rightarrow Just need to know the equation of state and transport coefficients!

C. Nonaka, M. Asakawa PRC71 (2005)

J. Brachmann et al. PRC61 (2000)

- •
- ٠

Phase transitions in fluid dynamics

- Conceptually, studying phase transitions in fluid dynamics is really simple!
- \Rightarrow Just need to know the equation of state and transport coefficients!

- No clear sensitivity on the equation of state in observables.
- BUT at the phase transition: fluctuations matter! Including fluctuations in fluid dynamics is more challenging...

Fluctuations at the phase transition

At a critical point

- correlation length of fluctuations of the order parameter diverges $\xi
 ightarrow \infty$
- fluctuations of the order parameter diverge: $\langle \Delta \sigma^n \rangle \propto \xi^{\alpha}$ with higher powers of divergence for higher moments
- mean-field studies in Ginzburg-Landau theories, beyond mean-field: renormalization group
- relaxation time diverges ⇒ critical slowing down!

```
\Rightarrow fluctuations in equilibrated systems!
```

... and a first-order PT:

- at T_c coexistence of two stable thermodynamic phases
- metastable states above and below $T_c \Rightarrow$ supercooling and -heating
- nucleation and spinodal decomposition in nonequilibrium
- domain formation and large inhomogeneities

 \Rightarrow fluctuations in nonequilibrium!

- ... but also at the crossover:
 - remnant of the O(4) universality class in the chiral limit.

 \Rightarrow fluctuations in equilibrated systems!

Ref. by many people: M. Stephanov, E. Shuryak, K. Rajagopal, L. Csernai, J. Randrup, I. Mishustin, C. Sasaki, B. Friman, K. Redlich et al.

The Kurtosis

The kurtosis is a measure of the deviation of fluctuations from Gaussian statistical fluctuations.

$$egin{aligned} &\langle \Delta X_i \Delta X_j \Delta X_k \Delta X_l
angle &\sim \langle \Delta X_i \Delta X_j
angle \langle \Delta X_k \Delta X_l
angle \ &+ \langle \Delta X_i \Delta X_k
angle \langle \Delta X_j \Delta X_l
angle \ &+ \langle \Delta X_i \Delta X_l
angle \langle \Delta X_j \Delta X_l
angle \end{aligned}$$

 $\Rightarrow \langle \Delta X^4 \rangle - 3 \langle \Delta X^2 \rangle^2 = 0$ in the Gaussian approximation.

compare to *Binder cumulant* for eg. 2d Ising model:

$$U=1-\frac{\langle M^4\rangle}{\langle M^2\rangle^2}$$

= 0 + O(1/V) in symmetric phase= $U^* = 2/3$ at $T = T_c$ = 2/3 + O(1/V) in the broken phase

Kurtosis in lattice QCD

fluctuations of conserved charges B, Q, S can be expressed in terms of generalized susceptibilities

$$\chi_{ijk}^{BQS} = \left. \frac{\partial^{i+j+k}(p/T^4)}{\partial \hat{\mu}_B^i \partial \hat{\mu}_Q^j \partial \hat{\mu}_S^k} \right|_{\mu=0} ; \frac{p}{T^4} = \frac{\ln Z}{VT^3} , \, \hat{\mu} = \frac{\mu}{T}$$

kurtosis $\kappa_B=\chi_4^B/(\chi_2^B)^2\to$ studied as $\kappa_B\sigma_B^2=\chi_4^B/\chi_2^B$ with variance $\sigma_B^2=\chi_2^B$

at zero density:

Kurtosis in lattice QCD - finite baryon density

• Taylor expansion:

(for
$$\mu_S = \mu_Q = 0$$
)
 $\kappa_B \sigma_B^2 = \frac{\chi_4^B + \frac{1}{2} \chi_6^B \hat{\mu}_B^2 + \dots}{\chi_2^B + \frac{1}{2} \chi_4^B \hat{\mu}_B^2 + \dots}$

requires knowledge of $6^{\rm th}$ -order susceptibility valid within radius of convergence of ln Z - Taylor expansion

 strong coupling lattice QCD: chiral limit calculation of netbaryon-number fluctuations oscillatory behavior in higher-order ratios around 2nd-order phase transition boundary

T. Ichihara et al., 1507.04527

The Kurtosis in transport models

- Transport models take the microcanonical nature of individual particle scatterings into account.
- Baryon-number conservation limits fluctuations of net-baryon number.

$$P_{\mu}(N,C) = \mathcal{N}(\mu,C)e^{-\mu}rac{\mu^N}{N!}$$
 on $[\mu-C,\mu+C]$

 μ : the expectation value of the original Poisson distribution, $\mathcal{N}(\mu, C)$: normalization factor, C > 0: cut parameter

$$C = \alpha \sqrt{\mu} \left(1 - \left(\frac{\mu}{N_{\rm tot}} \right)^2 \right)$$
 with $\alpha = 3, N_{\rm tot} = 416.$

- An increase of the average net-baryon number does not lead to stronger fluctuations.
- At the upper limit of $N_{\rm tot} =$ 416 the distribution changes to a δ -function ($K_{\delta}^{\rm eff} = 0$).

MN et al. Eur.Phys.J. C72 (2012)

The Kurtosis in UrQMD

- Same qualitative behavior of the net-baryon kurtosis as expected from the toy model.
- For small net-baryon numbers in the acceptance, the values of net-baryon, net-proton and net-charge kurtosis are compatible with values of 0 – 1.

- Much larger effect than expectation from binomial distribution \Rightarrow volume fluctuations?
- Recent UrQMD calculations by J. Steinheimer give the same result with much smaller error bars!

The Kurtosis in UrQMD

- adapting the rapidity window to fix the mean net-baryon number
- net-baryon effective kurtosis does not show an energy dependence

- fixed rapidity cut
- the net-baryon number varies with \sqrt{s}
- for lower $\sqrt{s} \ K^{\rm eff}$ becomes increasingly negative
- at $E_{
 m lab}=2A{
 m GeV}:\langle N_{B-ar{B}}
 angle\simeq 240$

The Kurtosis in thermal models + critical fluctuations

- Sigma field fluctuations: $\kappa_4 = \langle \delta \sigma^4 \rangle_c = rac{67}{V} \left(2(\lambda_3 \xi)^2 \lambda_4 \right) \xi^8$ M. Stephanov, PRL102 (2009)
- Sigma field couples to the protons via: $g_{
 ho} p \sigma ar{p} \Rightarrow m_{
 ho} o m_{
 ho} + g_{
 ho} \Delta \sigma$
- $\Rightarrow \text{ Fluctuations in net-protons: } \langle (\delta N_{\rho-\bar{\rho}})^4 \rangle_c = \langle (\Delta N_{\rho-\bar{\rho}})^4 \rangle_c + \langle (V\delta\sigma)^4 \rangle_c \cdot I^4_{\rho-\bar{\rho}} \,.$

 Possibility to study resonance decay + regeneration and isospin randomization effects!

work in progress with M. Bluhm (NCSU)

Nonequilibrium chiral fluid dynamics (N χ FD)

IDEA: combine the dynamical propagation of fluctuations at the phase transition with fluid dynamical expansion!

(model-independent is nice, but in the end some real input is needed...)

 Langevin equation for the sigma field: damping and noise from the interaction with the quarks

$$\partial_{\mu}\partial^{\mu}\sigma + rac{\delta U}{\delta\sigma} + g
ho_{s} + \eta\partial_{t}\sigma = \xi$$

Phenomenological dynamics for the Polyakov-loop

$$\eta_{\ell}\partial_{t}\ell T^{2} + \frac{\partial V_{\text{eff}}}{\partial \ell} = \xi_{\ell}$$

 Fluid dynamical expansion of the quark fluid = heat bath, including energy-momentum exchange

$$\partial_{\mu} T^{\mu\nu}_{\mathbf{q}} = \boldsymbol{S}^{\nu} = -\partial_{\mu} T^{\mu\nu}_{\sigma} \,, \quad \partial_{\mu} \boldsymbol{N}^{\mu}_{\mathbf{q}} = \boldsymbol{0}$$

 \Rightarrow includes a stochastic source term!

MN, S. Leupold, I. Mishustin, C. Herold, M. Bleicher, PRC 84 (2011); PLB 711 (2012); JPG 40 (2013) C. Herold, MN, I. Mishustin, M. Bleicher PRC 87 (2013); NPA925 (2014), C. Herold, MN, Y. Yan, C. Kobdaj JPG 41 (2014)

Dynamical slowing down

Phenomenological equation: $\frac{d}{dt}m_{\sigma}(t) = -\Gamma[m_{\sigma}(t)](m_{\sigma}(t) - \frac{1}{\xi_{\sigma\sigma}(t)})$ with input from the dynamical universality class $\Rightarrow \xi \sim 1.5 - 2.5$ fm

B. Berdnikov and K. Rajagopal, PRD 61 (2000))

5

3

2

0 0

2 3

 ξ in fm

$$egin{aligned} G(r) &= \int \mathrm{d}^3 x \mathrm{d}^3 y \langle \sigma(x) - \sigma_0
angle \langle \sigma(y) - \sigma_0
angle \ &\sim \exp(-r/\xi) \end{aligned}$$

Assume σ_0 is the volume averaged field.

t in fm

From the curvature of V_{eff} :

$$\langle \xi^2 \rangle = \langle 1/m_{\sigma}^2 \rangle = \left\langle \left(\frac{\mathrm{d}^2 V_{\mathrm{eff}}}{\mathrm{d}\sigma^2} \right)^{-1} \right\rangle$$

Definition of ξ in inhomogeneous systems involves averaging!

ž 🚦

8 9

 \Rightarrow Similar magnitude of $\xi \sim 1.5 - 3$ fm!

Dynamics versus equilibration

- Static box with temperature quench to $T < T_c$.
- Fluctuations of the order parameter:

- Strong enhancement of the intensities for a first-order phase transition during the evolution.
- Strong enhancement of the intensities for a critical point scenario after equilibration.

C. Herold, MN, I. Mishustin, M. Bleicher PRC 87 (2013)

Trajectories and isentropes at finite μ_B

- Fluid dynamical trajectories similar to the isentropes in the crossover region.
- No significant features in the trajectories left of the critical point.
- Right of the critical point: trajectories differ from isentropes and the system spends significant time in the spinodal region! ⇒ possibility of spinodal decomposition!

Bubble formation in net-baryon density

C. Herold, MN, I. Mishustin, M. Bleicher, arxiv:1304.5372

Bubble formation in net-baryon density

Can we expect experimental evidences for the first-order phase transition from bubble formation?

- Do the irregularities survive when a realistic hadronic phase is assumed?
- A strong pressure could transform the coordinate-space irregularities into momentum-space Fourier-coefficients of baryon-correlations ⇒ enhanced higher flow harmonics at a first-order phase transition? Very eos dependent!

EoS: PQM versus QH

- Below μ_c, p ≈ 0 in PQM, while it still decreases in HQ model and p < 0 can arise in PQM!
- Several eos lead to similar pressures at μ_B ≈ 0, but differ at large μ_B.
- With coexistence between dense quark matter and compressed nuclear matter (HQ-EoS) : ∂p_c/∂T < 0
- From effective models, like PNJL, PQM etc.: $\partial p_c / \partial T > 0$

J. Steinheimer, J. Randrup, V. Koch PRC89 (2014)

SU(3) chiral quark-hadron model

• Hadronic SU(3) non-linear sigma model including quark degrees of freedom

$$\mathcal{L} = \sum_{i} \bar{\psi}_{i} (i \gamma^{\mu} \partial_{\mu} - \gamma^{0} g_{i \omega} \omega - M_{i}) \psi_{i} + 1/2 (\partial_{\mu} \sigma)^{2} - U(\sigma, \zeta, \omega) - U(\ell)$$

and effective masses generated by

$$\begin{split} M_q &= g_{q\sigma}\sigma + g_{q\zeta}\zeta + M_{0q} + g_{q\ell}(1-\ell) \\ M_B &= g_{B\sigma}\sigma + g_{B\zeta}\zeta + M_{0B} + g_{qB}\ell^2 \end{split}$$

V. Dexheimer, S. Schramm, PRC81 (2010); M. Hempel, V. Dexheimer, S. Schramm, I. Iosilevskiy PRC88 (2013)

- hadrons are included as quasi-particle degrees of freedom
- yields a realistic structure of the phase diagram and phenomenologically acceptable results for saturated nuclear matter:

J. Steinheimer, V. Dexheimer, H. Petersen, M. Bleicher, S. Schramm, H. Stoecker, PRC81 (2010)

PQM vs. QH model - stability of droplets

PQM EoS

QH EoS

 Dynamical and stochastic droplet formation at the phase transition and subsequent decay in the hadronic phase.

PQM vs. QH model - moments of netbaryon density

Define normalized moments of the net-baryon density distribution as:

- Infinite increase in the PQM.
- Increase in the HQ model around the phase transition followed by a rapid decrease due to pressure in the hadronic phase!
- REMEMBER: We started with smooth initial conditions and all inhomogeneities are formed dynamically!

And the critical point?

- At $\mu_B \neq 0 \sigma$ mixes with the net-baryon density *n* (and *e* and \vec{m})
- In a Ginzburg-Landau formalism:

$$V(\sigma, n) = \int d^3x (\sum_m (a_m \sigma^m + b_m n^m) + \sum_{m,l} c_{m,l} \sigma^m n^l) - h\sigma - jn$$

- $V(\sigma, n)$ has a flat direction in $(a\sigma, bn)$ direction
- Equations of motion (including symmetries in V(σ, n)):

$$\partial_t^2 \sigma = -\Gamma \delta V / \delta \sigma + \dots$$
$$\partial_t n = \gamma \vec{\nabla}^2 \delta V / \delta n + \dots$$

• two time scales (with $D \rightarrow 0$ at the critical point)

$$\omega_1 \propto -i\Gamma a \ \omega_2 \propto -i\gamma Dec q^2$$

• The diffusive mode becomes the critical mode in the long-time dynamics. These fluctuations need to be included at the critical point!

H. Fuji, M. Ohtani PRD70 (2004); M. Stephanov, D. Son PRD70 (2004)

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- ... already in equilibrium there are thermal fluctuations
- ... the fast processes, which lead to local equilibration also lead to noise!

Conventional ideal fluid dynamics:

$$T^{\mu
u} = T^{\mu
u}_{
m eq}$$

 $N^{\mu} = N^{\mu}_{
m eq}$

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- ... already in equilibrium there are thermal fluctuations
- ... the fast processes, which lead to local equilibration also lead to noise!

Conventional viscous fluid dynamics:

$$egin{aligned} T^{\mu
u} &= T^{\mu
u}_{
m eq} + \Delta T^{\mu
u}_{
m visc} \ N^{\mu} &= N^{\mu}_{
m eq} + \Delta N^{\mu}_{
m visc} \end{aligned}$$

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

• ... already in equilibrium there are thermal fluctuations

... the fast processes, which lead to local equilibration also lead to noise!
 Stochastic viscous fluid dynamics:

$$egin{aligned} T^{\mu
u} &= T^{\mu
u}_{
m eq} + \Delta T^{\mu
u}_{
m visc} + \Xi^{\mu
u} \ N^{\mu} &= N^{\mu}_{
m eq} + \Delta N^{\mu}_{
m visc} + \mathrm{I}^{\mu} \end{aligned}$$

The noise terms are such that averaged quantities exactly equal the conventional quantities:

$$\begin{split} \langle T^{\mu\nu} \rangle &= T^{\mu\nu}_{\rm eq} + \Delta T^{\mu\nu}_{\rm visc} \qquad {\rm with} \quad \langle \Xi^{\mu\nu} \rangle = 0 \\ \langle N^{\mu} \rangle &= N^{\mu}_{\rm eq} + \Delta N^{\mu}_{\rm visc} \qquad {\rm with} \quad \langle I^{\mu} \rangle = 0 \end{split}$$

The two formulations will, however, differ when one calculates correlation functions:

$$\begin{array}{c} \langle T^{\mu\nu}(x)T^{\mu\nu}(x')\rangle \\ \langle N^{\mu}(x)N^{\mu}(x')\rangle \end{array}$$

In linear response theory the retarded correlator

- $\langle T^{\mu\nu}(x)T^{\mu\nu}(x')\rangle$ gives the viscosities and
- $\langle N^{\mu}(x)N^{\mu}(x')\rangle$ the charge conductivities

via the dissipation-fluctuation theorem (Kubo-formula)!

It means that when dissipation is included also fluctuations need to be included!

CAUTION: If nonlinearities are included fluid dynamical fluctuations contribute to the transport coefficients!

- \Rightarrow absolut lower limit for the effective viscosity!
- \Rightarrow non-analytic contribution to τ_{π} , breakdown of gradient expansion!

P. Kovtun, G. D. Moore, P. Romatschke, PRD84 (2011); C. Chafin, T. Schäfer, PRA87 (2013); P. Romatschke, R. E. Young, PRA87 (2013)

Linearized fluid dynamical equations: small fluctuations *ē* + δ*e*, *p̄* + δ*p* and δ*vⁱ* with: δ*T*⁰⁰ = δ*e* and δ*T^{ij}* = *mⁱ* = (*ē* + *p̄*)*vⁱ* = *w̄vⁱ*

$$\partial_t \mathbf{m}_{\perp} + \eta / \bar{w} \mathbf{k}^2 \mathbf{m}_{\perp} = 0$$
$$\partial_t \delta \mathbf{e} + i \mathbf{k} \cdot \mathbf{m}_{||} = 0$$
$$\partial_t \mathbf{m}_{||} + i v_s^2 \mathbf{k} \delta \mathbf{e} + \gamma_v \mathbf{k}^2 \mathbf{m}_{||} = 0$$

• retarded Green's function for δe and $\mathbf{m}_{||}$:

$$G_{ab}^{\rm ret}(\omega,\mathbf{k}) = \frac{\bar{w}}{\omega^2 - v_s^2 \mathbf{k}^2 + i\omega\gamma_s \mathbf{k}^2} \begin{pmatrix} \mathbf{k}^2 & \omega |\mathbf{k}| \\ \omega |\mathbf{k}| & v_s^2 \mathbf{k}^2 - i\omega\gamma_s \mathbf{k}^2 \end{pmatrix}$$

including the transverse momentum density:

$$G_{m_i,m_j}^{\text{ret}}(\omega,\mathbf{k}) = \left(\delta_{ij} - \frac{k_i k_j}{\mathbf{k}^2}\right) \frac{\eta \mathbf{k}^2}{i\omega - \gamma_\eta \mathbf{k}^2} + \frac{k_i k_j}{\mathbf{k}^2} \frac{\bar{w}(v_s^2 \mathbf{k}^2 - i\omega \gamma_s \mathbf{k}^2)}{\omega^2 - v_s^2 \mathbf{k}^2 + i\omega \gamma_s \mathbf{k}^2}$$

Kubo-formulas for viscosities:

$$egin{aligned} \eta &= -rac{\omega}{2\mathbf{k}^2} \left(\delta_{ij} - rac{k_i k_j}{\mathbf{k}^2}
ight) \Im G^{ ext{ret}}_{m_i m_j}(\omega, \mathbf{k} o 0) \ \zeta &+ rac{4}{3} \eta = -rac{\omega^3}{\mathbf{k}^4} \Im G^{ ext{ret}}_{ heta e}(\omega, \mathbf{k} o 0) \end{aligned}$$

$$\begin{aligned} \frac{\partial}{\partial_{x}^{\mu}} \frac{\partial}{\partial_{x'}^{\mu}} \langle \Xi^{\mu 0}(x) \Xi^{\mu 0}(x') \rangle^{S} &= -\frac{\partial}{\partial_{x}^{\mu}} \frac{\partial}{\partial_{x'}^{\mu}} \langle T^{\mu 0}(x) T^{\mu 0}(x') \rangle^{S} \\ &= \int \frac{\mathrm{d}\omega}{2\pi} \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} e^{i\mathbf{k}(\mathbf{x}-\mathbf{x}')} e^{-i\omega(t-t')} \times \\ &\times \left(\omega^{2} \underbrace{\mathbf{G}_{\theta \theta}^{S}(\omega, \mathbf{k})}_{\text{FDT}} - 2\omega |\mathbf{k}| \underbrace{\mathbf{G}_{\theta m|1}^{S}(\omega, \mathbf{k})}_{\text{FDT}} + \mathbf{k}^{2} \underbrace{\mathbf{G}_{m|1}^{S}m_{1|}(\omega, \mathbf{k})}_{\text{FDT}} \right) \\ &\mathbf{G}_{ab}^{S}(\omega, \mathbf{k}) = -\frac{2T}{\omega} \Im \mathbf{G}_{ab}^{\text{ret}}(\omega, \mathbf{k}) \end{aligned}$$

$$\begin{split} \frac{\partial}{\partial_x^{\mu}} \frac{\partial}{\partial_{x'}^{\mu}} \langle \Xi^{\mu i}(x) \Xi^{\mu j}(x') \rangle^{\mathcal{S}} &= -\frac{\partial}{\partial_x^{\mu}} \frac{\partial}{\partial_{x'}^{\mu}} \langle T^{\mu i}(x) T^{\mu j}(x') \rangle^{\mathcal{S}} \\ &= 2T \left[\left(\zeta + \frac{4}{3} \eta \right) \partial_i \partial_j + \eta (\delta_{ij} \nabla^2 - \partial_i \partial_j) \right] \delta^4(x - x') \end{split}$$

Then boost to arbitrary frame:

$$T^{\mu
u} = T^{\mu
u}_{eq} + \Delta T^{\mu
u}_{visc} + \Xi^{\mu
u}$$

 $N^{\mu} = N^{\mu}_{eq} + \Delta N^{\mu}_{visc} + I^{\mu}$

with

$$\langle \Xi^{\mu\nu}(x)\Xi^{\alpha\beta}(x')\rangle = 2T[\eta(\Delta^{\mu\alpha}\Delta^{\nu\beta} + \Delta^{\mu\beta}\Delta^{\nu\alpha}) + (\zeta - 2/3\eta)\Delta^{\mu\nu}\Delta^{\alpha\beta}]\delta^4(x - x')$$

• In second-order fluid dynamics there are relaxation equations for $\Xi^{\mu\nu}$:

$$u^{\gamma}\partial_{\gamma}\Xi^{\langle\mu\nu\rangle} = -\frac{\Xi^{\mu\nu} - \xi^{\mu\nu}_{\rm gauss}}{\tau_{\pi}}$$

• In white noise approximation and ignoring bulk viscosity ($\zeta = 0$):

$$\langle \xi^{\mu\nu}_{\mathrm{gauss}}(x)\xi^{lphaeta}_{\mathrm{gauss}}(x')
angle = 4T\eta\Delta^{\mu
ulphaeta}\delta^{(4)}(x-x')$$

- In a numerical treatment \rightarrow discretization: $\langle \xi^2 \rangle \propto \frac{1}{\Delta V}$
- ⇒ large fluctuations from cell to cell ⇒ coarse-graining, smearing, etc. compare to expectations from equilibrium and MC kinetic theory!

J. Bell, A. Garcia, S. Williams, PRE76 (2007)

 Different algorithms treat fluctuations differently, third-order methods seem to work best.

- Static box with periodic boundary conditions in relativistic 3 + 1d fluid dynamics based on 3 + 1d viscous fluid dynamical code by Y. Karpenko.
- Noise correlated over 1 fm³

- Average energy(-momentum) conserved within 5%.
- Variance of the energy density fluctuations are approximately 30 40% of what is expected in a grandcanonical ensemble.

Conclusions

- Fluctuation data from heavy-ion collisions at finite μ_B can only be understood with dynamical models of the phase transition!
- In N χ FD, effects like critical slowing down and droplet formation can be observed.
- PQM-like EoS do not include pressure in hadronic phase, droplets remain stable.
- In HQ-like EoS: droplets form dynamically at the phase transition, then decay.
- Some more effort is needed for studying event-by-event critical fluctuations...
- Next steps: particle production in N $_{\chi}\text{FD}$ and (net-baryon) fluid dynamical fluctuations.

FACE DIAGRAM

backup

Net-baryon number distribution in UrQMD

central Pb+Pb collisions at $E_{\rm lab} = 20 A GeV$

- fit to a Poisson distribution
- shoulders are enhanced
- tails are cut •

 \implies

decrease from
$$K_{\rm Poisson}^{\rm eff}$$
 = 1
 $K_{\rm UrQMD}^{\rm eff}$ = -22.2

ratio of UrQMD to Poisson distribution

Comparison

• Nonequilibrium construction of the EoS from QGP and hadronic matter:

• Significant amplification of initial density irregularities

 BUT: deterministic evolution of the system ⇒ No inhomogeneities for smooth initial conditions!