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Outline
• initial spatial distributions and the response of the system 

• integrated elliptic flow  

• EoS, Knudsen number and η/s 

• pt-differential elliptic flow 

• identified particles 

• other harmonics 

• what do we measure? 

• vn probability distributions 

• rapidity dependence
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Our current picture
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hadron cascade?
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A long long time ago
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FIG. 1. Peripheral collision viewed in the transverse plane. b
is the impact parameter. The shaded area corresponds to the
region where particles are created in the central rapidity region.
Outside this region is the vacuum.

S
f, +f,BzF 0

0 2. (2.4)

The term f38F, which may be important, is the remnant
of the bounce off. From Eq. (2.3), one getsf3 —-S33=+M &to(v)p, (v). Thus, the main contribution
to fz comes from the fragmentation regions which corre-
spond to the highest values of ~p, ~

in the center-of-mass
frame. We shall hereafter restrict our study to the cen-
tral rapidity region where ~p, ~

is much smaller, and we
assume that fzBF is negligible in this case. Thenf( —-S(t =g„tw(v)p„(v), fz =Szz =g„tw(v)py~(v},
and the sidesplash of the reaction products along the
direction of impact parameter x results in f, &fz. The
whole rapidity range may contribute to this effect. A nat-
ural measure of this anisotropy in transverse momenta is
the dimensionless observable a defined as

g w ( v) [p„(v)—p„(v) ]fi fz-
f +f M

g w(v)[p„(v) +py(v) ]
(2.5)

a=O for an isotropic distribution (f, =fz), whereasa=1 if all momenta are directed along the impact line
(fz=0). The last equality in Eq. (2.5) holds only if x is
the direction of impact parameter. Alternatively, we can
use the following expression which is valid in any coordi-
nate system for the transverse plane:

1/2
4detSa= 1—
(trS )' (2.6)

This allows one to calculate a directly as a function of
the measured transverse sphericity tensor S;.. It appears
clearly in this form that a is the only observable we can
construct from S;. if we require it to be dimensionless and
invariant through rotations about the collision axis. The
ultrarelativistic case is thus simpler than the low-energy
case where three rotationally invariant and dimensionless
parameters must be considered. A collective How would
reveal itself through a nonzero value of a for peripheral

III. FINITE MULTIPLICITY FLUCTUATIONS

A. Jacobian-free analysis

With a finite number of particles M, one never obtains
an isotropic distribution, even if the particles are emitted
according to an isotropic emission probability. Even
worse, as we shall see, an isotropic emission probability
gives rise to a probability law for a which is not centered
at a=O as we would expect, but rather at a value
a-1/~M. Here we show how to get rid of this shift by
defining a corrected distribution for a, following the
analysis of Danielewicz and Gyulassy [7].
If correlations between particles are neglected, the cen-

tral limit theorem states that in the limit of large multi-
plicity M the probability law for S; is of Gaussian form
and strongly peaked around its mean value (S~ },with a
width varying like 1/v M. However, we are not interest-
ed in the distribution of S; but rather in the distribution
of a. In order to change variables, we need two other
quantities since S;- has three independent components.
We take, for instance, v = trS =+M Ipz. (v) and the an-
gle 0 between the I axis and the largest principal axis of
S~. Then, in terms of the variables (a, @,8), the expres-
sionofS is

1+a cos28
a sin28

a sin20
1—a cos20 (3 1)

Transforming variables from S;. to a, 6, and 8 brings in a
Jacobian factor

collisions, while a=0 for central collisions, which are iso-
tropic in the transverse plane. So we must study the
correlation of a with the multiplicity (we recall that the
multiplicity is a fair measure of the impact parameter
[4]). We expect that a will be a decreasing function of
the multiplicity if collective transverse Bow occurs.
Finally, note that the weight w(v) = 1/2m

„

in Eq. (2.1)
is quite inappropriate at ultrarelativistic energies. First,
S,,- does not represent the kinetic energy any more.
Second, composite fragments for which this weight was
introduced represent a negligible fraction of the emitted
particles, especially in the central rapidity region. Third,
the transverse momenta of different types of particles
have comparable distributions (this is the observed mz.
scaling [5]}. Thus, we shall take w(v)=1, and the trans-
verse sphericity tensor is then simply defined as

M
S~J = g p, (v)p, (v) (2.7)

v= 1

with i,j=1,2. Since S; only involves the transverse mo-
menta, it is invariant under Lorentz boosts along the col-
lision axis. This is a nice property from a theoretical
point of view since the central rapidity region is expected
to enjoy the same property at high energies [6]. From the
experimental point of view, restricting ourselves to trans-
verse coordinates allows us to measure S; directly in the
laboratory frame for fixed-target experiments.
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argument is the following: at a small time ~ after
thermalization, the fluid velocity is proportional to ~ ac-
cording to the relativistic Euler equation
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FIG. 4. Lead-lead collision and equation of state of a mass-
less pion gas. Solid lines: anisotropy a as a function of the
number of participating nucleons N. The impact parameter b is
also shown on the horizontal scale. The decoupling tempera-
ture is Td=150 MeV. The initial time is to=2 fm/c for the
lower curve and to=1 fm/c for the upper curve. Dashed line:
linear approximation, Eq. (5.2).

where w =4P is the enthalpy density and Ro is a typical
transverse size. Thus, the transverse velocity is, in any
case, small at times much smaller than Ro. Therefore, if
one changes the thermalization time from to«Rp to
to «Rp one expects that any observable associated with
transverse collective fiow (and, in particular, the anisotro-
py a) undergoes a relative change of order
(to t —o)/R 0«1, which can be neglected in a first ap-
proximation. The hypothesis that to «Ro thus allows
one to get rid of the uncertainty on to. However, it is not
satisfied for very peripheral collisions where the trans-
verse dimensions are smaller, and where the thermaliza-
tion time could also be bigger since the density is lower.
The results of numerical calculations carried out with

two different values of to are displayed in Fig. 4. As ex-
pected, the difference between the two curves is negligible
except for small multiplicities, which correspond to very
peripheral collisions where to-RO.

C. Influence of the decoupling temperature

anisotropy in the initial conditions. The only difference is
for very peripheral collisions with b &12 fm where the
decrease of a is more important than that of a, . We shall
comment on this later in this section. The variation of a
with N is almost linear, so that the formula

a=a,„(1N/N, „)— (5.2)

with a,„=0.33 and N,„=395(value of N for a central
collision) reproduces the numerical results remarkably
well down to N =N,„/10.

B. Influence of the initial time

The initial time to fixes the beginning of hydrodynami-
cal expansion. One expects this time to be of the order of
1 fm/c, which is the order of magnitude of the time it
takes the nuclei to cross each other, and also the typical
scale for the formation of particles. However, it is
diScult to estimate this time accurately. Even the con-
cept of initial time is itself a simplification: since the ini-
tial density is not homogeneous, different parts of the sys-
tern can thermalize at different times. Thus, it is neces-
sary to study how a modification of to affects the anisot-
«py.
In fact, it is easy to show [10] that the transverse col-

lective flow is not much affected by a change of the
thermalization time to as long as the latter remains much
smaller than the transverse size Ro of the system, which
is as large as 7 fm/c for a central lead-lead collision. The

T~s—To ( r0 /R 0 ) (5.4)

and one expects the anisotropy to vary slowly with Td if
Td & Tea.
Concerning the impact-parameter dependence, two

effects must be considered: First, Td (which is the temper-
ature at which the mean free path equals the dimension
of the system) is larger for a smaller system, and thus in-

While to fixes the time when hydrodynamic expansion
starts, the decoupling temperature tells us when it stops.
One usually assumes that Td is of the order of the pion
mass, but its precise value remains uncertain. The small-
er Td, the longer hydrodynamics lasts. Since collective
flow creates anisotropy, one naturally expects a to in-
crease with decreasing Td.. if Td is as big as the initial
temperature To, the system decouples as soon as it
thermalizes and since the initial distribution is isotropic
in the transverse plane, a is zero; in the limit Td ~0, on
the other hand, a reaches its maximum value. (This is, in
fact, not always true, but we shall come back to this point
in Sec. VI A.) The question which arises is whether there
is a typical scale for Td, under which the variations of a
can be neglected. In fact, once the transverse expansion
has fully developed, one intuitively expects a to increase
only slowly with time. The time it takes for the trans-
verse expansion to develop is of the order of the trans-
verse size Ro of the system. The typical temperature at
this time, which we refer to as the effective temperature
T,~, can be estimated simply: since longitudinal expan-
sion dominates for to &Ro, the entropy density decreases
like [6] 1/t. Using Eq. (5.1), the temperature at t =Ro is
then approximately given by
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The Classical Picture
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A Single Collision
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Many Collisions in the Lab 
Frame
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Many Collisions versus the 
Reaction Plane

9

 x (fm)
20− 15− 10− 5− 0 5 10 15 20

 y
 (f

m
)

20−

15−

10−

5−

0

5

10

15

20 Spectators
RMS x   7.362
RMS y   3.318

Spectators
RMS x   7.362
RMS y   3.318

 x (fm)
20− 15− 10− 5− 0 5 10 15 20

 y
 (f

m
)

20−

15−

10−

5−

0

5

10

15

20 Wounded Nucleons
RMS x    2.42
RMS y    2.76

Wounded Nucleons
RMS x    2.42
RMS y    2.76



A long long time ago
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A long long time ago
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FIG. 4. Lead-lead collision and equation of state of a mass-
less pion gas. Solid lines: anisotropy a as a function of the
number of participating nucleons N. The impact parameter b is
also shown on the horizontal scale. The decoupling tempera-
ture is Td=150 MeV. The initial time is to=2 fm/c for the
lower curve and to=1 fm/c for the upper curve. Dashed line:
linear approximation, Eq. (5.2).

where w =4P is the enthalpy density and Ro is a typical
transverse size. Thus, the transverse velocity is, in any
case, small at times much smaller than Ro. Therefore, if
one changes the thermalization time from to«Rp to
to «Rp one expects that any observable associated with
transverse collective fiow (and, in particular, the anisotro-
py a) undergoes a relative change of order
(to t —o)/R 0«1, which can be neglected in a first ap-
proximation. The hypothesis that to «Ro thus allows
one to get rid of the uncertainty on to. However, it is not
satisfied for very peripheral collisions where the trans-
verse dimensions are smaller, and where the thermaliza-
tion time could also be bigger since the density is lower.
The results of numerical calculations carried out with

two different values of to are displayed in Fig. 4. As ex-
pected, the difference between the two curves is negligible
except for small multiplicities, which correspond to very
peripheral collisions where to-RO.

C. Influence of the decoupling temperature

anisotropy in the initial conditions. The only difference is
for very peripheral collisions with b &12 fm where the
decrease of a is more important than that of a, . We shall
comment on this later in this section. The variation of a
with N is almost linear, so that the formula

a=a,„(1N/N, „)— (5.2)

with a,„=0.33 and N,„=395(value of N for a central
collision) reproduces the numerical results remarkably
well down to N =N,„/10.

B. Influence of the initial time

The initial time to fixes the beginning of hydrodynami-
cal expansion. One expects this time to be of the order of
1 fm/c, which is the order of magnitude of the time it
takes the nuclei to cross each other, and also the typical
scale for the formation of particles. However, it is
diScult to estimate this time accurately. Even the con-
cept of initial time is itself a simplification: since the ini-
tial density is not homogeneous, different parts of the sys-
tern can thermalize at different times. Thus, it is neces-
sary to study how a modification of to affects the anisot-
«py.
In fact, it is easy to show [10] that the transverse col-

lective flow is not much affected by a change of the
thermalization time to as long as the latter remains much
smaller than the transverse size Ro of the system, which
is as large as 7 fm/c for a central lead-lead collision. The

T~s—To ( r0 /R 0 ) (5.4)

and one expects the anisotropy to vary slowly with Td if
Td & Tea.
Concerning the impact-parameter dependence, two

effects must be considered: First, Td (which is the temper-
ature at which the mean free path equals the dimension
of the system) is larger for a smaller system, and thus in-

While to fixes the time when hydrodynamic expansion
starts, the decoupling temperature tells us when it stops.
One usually assumes that Td is of the order of the pion
mass, but its precise value remains uncertain. The small-
er Td, the longer hydrodynamics lasts. Since collective
flow creates anisotropy, one naturally expects a to in-
crease with decreasing Td.. if Td is as big as the initial
temperature To, the system decouples as soon as it
thermalizes and since the initial distribution is isotropic
in the transverse plane, a is zero; in the limit Td ~0, on
the other hand, a reaches its maximum value. (This is, in
fact, not always true, but we shall come back to this point
in Sec. VI A.) The question which arises is whether there
is a typical scale for Td, under which the variations of a
can be neglected. In fact, once the transverse expansion
has fully developed, one intuitively expects a to increase
only slowly with time. The time it takes for the trans-
verse expansion to develop is of the order of the trans-
verse size Ro of the system. The typical temperature at
this time, which we refer to as the effective temperature
T,~, can be estimated simply: since longitudinal expan-
sion dominates for to &Ro, the entropy density decreases
like [6] 1/t. Using Eq. (5.1), the temperature at t =Ro is
then approximately given by
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D. Spatial anisotropy

The initial repartition of the entropy density is clearly
anisotropic in the transverse plane for a peripheral col-
lision, as can be seen in Fig. 1. As we explained in Sec.
II B, this anisotropy initially present in the spatial distri-
butions is at the origin of the anisotropy in momentum
distributions. It is therefore interesting to define a mea-
sure of this spatial anisotropy. For this purpose, consider
the region in the (x,y) plane where the initial entropy
density is at least equal to half its maximum value. If L,
is the size of this region in the x direction (direction of
impact parameter) and L~ its size in the orthogonal direc-
tion y (L )L„),a natural measure of the spatial anisot-
ropy a, is

Ly —L„
L +L (4.18)

a, can then be computed as a function of impact parame-
ter for a given colliding system, or equivalently, as a func-
tion of the number of participating nucleons. The result
is displayed in Fig. 3. As expected, a, is an increasing
function of impact parameter and thus a decreasing func-
tion of the number of participants N, and it vanishes for
central collisions as a consequence of isotropy. The de-
crease of a, for very peripheral collisions is an effect of
the skin thickness of the nuclei, g, which enters the pa-
rametrization of the nuclear density in Eq. (4.16). Since g
is approximately the same for all nuclei, this effect is
more important for smaller nuclei such as S, where g is
larger compared to the size of the nucleus than for a
heavy nucleus. Note that the decrease of a, with N is ap-
proximately linear for the three colliding systems con-
sidered here. The maximum value of a, is about 0.3 for a
Pb-Pb collision, and somewhat smaller for the two other
systems. Thus, a, tends to increase with size of target
and/or projectile.
We expect that the anisotropy in transverse momenta,

for the target nucleus, and a similar formula with A and
8 exchanged for the projectile nucleus. In Eq. (4.17), b is
the impact parameter and cr,„=33mb is the total inelas-
tic nucleon-nucleon cross section The initial entropy
density is then taken proportional to the total density of
participants: so ~ dN& /d r+dN&/d r. The propor-
tionality constant is chosen in such a way that the final
multiplicity corresponds to the experimental value. At
CERN energies, the multiplicity per unit rapidity and per
participant is approximately 2. This is the value we take
in the numerical calculations presented in the following
sections. At energies to be reached at the BNL Relativis-
tic Heavy Ion Collider (RHIC) and CERN Large Hadron
Collider (LHO), the multiplicity per participant will be
larger. The effect of a change in the bombarding energy
will be studied in Sec. V D. We recall that the multiplici-
ty per unit rapidity and the transverse energy per unit ra-
pidity are both proportional, to a good approximation, to
the number of participants. In the following sections, we
shall consider any of these quantities as a measure of the
impact parameter.

1 0

0.4

0.2

0.0 '

0.0 0.2 0.4 0
N/N

O.B 1.0

FIG. 3. Spatial anisotropy for various colliding systems. a„
defined by Eq. (4.18), is plotted against the number of participat-
ing nucleons, scaled to its maximum value (reached for a central
collision) N,„.Short dashes: lead-lead collision (N,„=395).
Long dashes: sulfur-sulfur collision (N,„=51).Solid line:
sulfur-tungsten collision (N,„=121).

a, will be comparable to the spatial anisotropy a, . How-
ever, while a, only involves the initial conditions, other
parameters come into play in the determination of a,
which are the parameters of hydrodynamics: initial time,
decoupling temperature, and equation of state. In Secs.
V and VI, we study their inAuence on a.

V. MASSLESS PION GAS

The simplest equation of state one can think of is that
of blackbody radiation, which corresponds here to taking
only pions into account, and neglect their mass and in-
teractions. The entropy density s is then

(5.1)

where v&=3 is the pion degeneracy factor. Such an
equation of state considerably overestimates the tempera-
ture for a given density, as is shown [12,14] by a discus-
sion of the average transverse momentum (pr ). Howev-
er, we use it as a reference case because it does not con-
tain any dimensional parameter: thus, the only tempera-
ture scale in the problem is the initial temperature.

A. Variation of a with the multiplicity

Using Eq. (5.1), we computed the anisotropy a defined
by Eq. (4.9) as a function of the number of participants.
We take the values to=1 fm/c for the initial time and
Td=150 MeV/c for the decoupling temperature and
postpone the discussion concerning these parameters un-
til the following sections. The result is displayed in Fig. 4
for a Pb-Pb collision. a is very close to the spatial anisot-
ropy a, displayed in Fig. 3, which shows that the anisot-
ropy in the final momenta is tightly related to the spatia1
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D. Spatial anisotropy

The initial repartition of the entropy density is clearly
anisotropic in the transverse plane for a peripheral col-
lision, as can be seen in Fig. 1. As we explained in Sec.
II B, this anisotropy initially present in the spatial distri-
butions is at the origin of the anisotropy in momentum
distributions. It is therefore interesting to define a mea-
sure of this spatial anisotropy. For this purpose, consider
the region in the (x,y) plane where the initial entropy
density is at least equal to half its maximum value. If L,
is the size of this region in the x direction (direction of
impact parameter) and L~ its size in the orthogonal direc-
tion y (L )L„),a natural measure of the spatial anisot-
ropy a, is

Ly —L„
L +L (4.18)

a, can then be computed as a function of impact parame-
ter for a given colliding system, or equivalently, as a func-
tion of the number of participating nucleons. The result
is displayed in Fig. 3. As expected, a, is an increasing
function of impact parameter and thus a decreasing func-
tion of the number of participants N, and it vanishes for
central collisions as a consequence of isotropy. The de-
crease of a, for very peripheral collisions is an effect of
the skin thickness of the nuclei, g, which enters the pa-
rametrization of the nuclear density in Eq. (4.16). Since g
is approximately the same for all nuclei, this effect is
more important for smaller nuclei such as S, where g is
larger compared to the size of the nucleus than for a
heavy nucleus. Note that the decrease of a, with N is ap-
proximately linear for the three colliding systems con-
sidered here. The maximum value of a, is about 0.3 for a
Pb-Pb collision, and somewhat smaller for the two other
systems. Thus, a, tends to increase with size of target
and/or projectile.
We expect that the anisotropy in transverse momenta,

for the target nucleus, and a similar formula with A and
8 exchanged for the projectile nucleus. In Eq. (4.17), b is
the impact parameter and cr,„=33mb is the total inelas-
tic nucleon-nucleon cross section The initial entropy
density is then taken proportional to the total density of
participants: so ~ dN& /d r+dN&/d r. The propor-
tionality constant is chosen in such a way that the final
multiplicity corresponds to the experimental value. At
CERN energies, the multiplicity per unit rapidity and per
participant is approximately 2. This is the value we take
in the numerical calculations presented in the following
sections. At energies to be reached at the BNL Relativis-
tic Heavy Ion Collider (RHIC) and CERN Large Hadron
Collider (LHO), the multiplicity per participant will be
larger. The effect of a change in the bombarding energy
will be studied in Sec. V D. We recall that the multiplici-
ty per unit rapidity and the transverse energy per unit ra-
pidity are both proportional, to a good approximation, to
the number of participants. In the following sections, we
shall consider any of these quantities as a measure of the
impact parameter.
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0.0 '

0.0 0.2 0.4 0
N/N

O.B 1.0

FIG. 3. Spatial anisotropy for various colliding systems. a„
defined by Eq. (4.18), is plotted against the number of participat-
ing nucleons, scaled to its maximum value (reached for a central
collision) N,„.Short dashes: lead-lead collision (N,„=395).
Long dashes: sulfur-sulfur collision (N,„=51).Solid line:
sulfur-tungsten collision (N,„=121).

a, will be comparable to the spatial anisotropy a, . How-
ever, while a, only involves the initial conditions, other
parameters come into play in the determination of a,
which are the parameters of hydrodynamics: initial time,
decoupling temperature, and equation of state. In Secs.
V and VI, we study their inAuence on a.

V. MASSLESS PION GAS

The simplest equation of state one can think of is that
of blackbody radiation, which corresponds here to taking
only pions into account, and neglect their mass and in-
teractions. The entropy density s is then

(5.1)

where v&=3 is the pion degeneracy factor. Such an
equation of state considerably overestimates the tempera-
ture for a given density, as is shown [12,14] by a discus-
sion of the average transverse momentum (pr ). Howev-
er, we use it as a reference case because it does not con-
tain any dimensional parameter: thus, the only tempera-
ture scale in the problem is the initial temperature.

A. Variation of a with the multiplicity

Using Eq. (5.1), we computed the anisotropy a defined
by Eq. (4.9) as a function of the number of participants.
We take the values to=1 fm/c for the initial time and
Td=150 MeV/c for the decoupling temperature and
postpone the discussion concerning these parameters un-
til the following sections. The result is displayed in Fig. 4
for a Pb-Pb collision. a is very close to the spatial anisot-
ropy a, displayed in Fig. 3, which shows that the anisot-
ropy in the final momenta is tightly related to the spatia1
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The asymmetry is larger and even non-zero for 
perfectly central collisions 

This asymmetry in coordinate space is though to be 
responsible, due to e.g. final state interactions, for 

the observed anisotropy in particle production  
vn / "n
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they would greatly change the centrality dependence.
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FIG. 1. Top: comparison of elliptic flow, v2, for pions from RQMD ver. 2.3 (filled circles) with

the dependence expected for the low-density limit (solid line) and that expected for the hydro limit

(dashed line). Bottom: ratios of v2/vLDL
2 , and v2/vHY DRO

2 .

RQMD

Before discussing the experimental data we will first consider a realistic model. We

take RQMD v2.3 [10] for our calculations. Fig. 1 top shows the comparison of the directly

calculated v2 of pions in Pb+Pb collisions at 158 GeV·A collisions at mid-rapidity (−1 <

y < 1) with the expectation from the low density limit, vLDL
2 (Eq. (1) normalized to the

same area under the curve in order to illustrate just the centrality dependence.) One can

5

suming that it is proportional to the total particle multiplicity and also to the initial particle

multiplicity. For the experimental values we use dNch/dy at mid-rapidity from [14,15].

0

0.1
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0.3

0 20 40
(dNch/dy)/S  (fm-2)

v 2 
/ε

HYDRO

AGS SPS RHIC LHC

QGP

pion gas

hadrons
partons

FIG. 3. Elliptic flow divided by the initial space elliptic anisotropy at the AGS (open circles)

and the SPS (filled squares). The shaded area shows the uncertainty in the SPS experimental data

due to the uncertainty in the centrality determination. See text and footnote for the description

of the curves and hydro limits.

In the limit of very low density the objects which rescatter must be hadrons. At some

critical density a partial deconfinement happens. Parton density becomes high enough such

that the color parton can propagate in the perpendicular plane without hadronization. Each

parton is always close enough to other partons which screen its color6. Once the motion in

anisotropy and the area of the overlapping region. The data points correspond to the centrality

determined from the fraction of the total cross section corresponding to each centrality bin. Higher

centralities were estimated from experimental measurement of the number of participants [14]. Fi-

nally, the smooth dashed curves are just schematic illustrations for hadronic and partonic scenarios

and the solid curve includes a transition between the two.

6This picture is very close to the deconfinement (color percolation) model discussed by Satz [16]

10

vn / "n
sensitive to the EoS and transport parameters
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Based on the centrality dependence of v2/", the magnitude of  /s for the created system has
been estimated recently from a transport theory motivated calculation [10, 11] and from viscous
hydrodynamical calculations [12, 13]. Both approaches have their merits and drawbacks.

In these proceedings we explore how well a parameterization can be used to estimate  /s as
well as the ideal hydrodynamical limit of v2/" which is closely related to the EoS.

2. Simple Parameterization

We use the parameterization from [2, 10] which is defined by

v2
"
=

h
1 + B/( 1S

dN
dy )

, (1)

where S is the transverse area of the collision region and h and B are the two free parameters in
the fit. The parameter h corresponds to the ideal hydro limit of v2/" and B is proportional to  /s.

Figure 1 shows how the parameterization behaves for two di erent values of the ideal hydro
limit (the dashed line represents the harder EoS) and two di erent values of  /s (the full line
represents the smaller  /s). The e ect of the EoS is clearly seen in the magnitude of v2/" in
Fig. 1 and the value of  /s is reflected by the change in this magnitude versus 1/S dN/dy (for
 /s = 0 the magnitude will be constant). The magnitude of  /s is easier to quantify if one
plots v2/h", as is done in Fig. 2.  larger deviation from unity at fixed value of 1/S dN/dy then
indicates a larger  /s.

To test if this simple parameterization does describe a state of the art viscous hydrodynamical
calculation we fit the calculations from Luzum and Romatschke [14]. Figure 3 shows that Eq. 1
well describes results from viscous hydrodynamical calculations, done with three di erent values
of  /s and two di erent parameterizations of the spatial eccentricity (Glauber and CGC).  s
expected, v2 is to good approximation proportional to the initial spatial eccentricity. In addition,
it is seen that the deviation of v2/" from unity at a given 1/S dN/dy increases for larger values of
 /s.

Figure 4 shows v2/h" from viscous hydrodynamical calculations [12, 13, 14] done by di er-
ent groups using the same set of values of  /s but di erent parameterization of the E S and ".
The value of " is that used in the hydrodynamical calculations while the value of h is obtained

1/S dN/dy
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Figure 1: The dependence of v2/" versus transverse density
of equation 1 for two values of h and two values of  /s.
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Figure 2: The dependence of v2/h" versus transverse den-
sity of equation 1 for the same parameters as Fig. 1.
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Figure 3:  fit of viscous hydrodynamical model results
using CGC and Glauber initial eccentricities with Eq. 1.
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from the fit. We conclude that our parameterization yields curves that depend on the value of
 /s but are roughly independent of the E S and ". However it turns out that if the EoS is very
di erent (e.g. not incorporating a phase transition) this scaling does break down (not shown).

Using Eq. 1, we can now compare the various viscous hydrodynamical results with data and
estimate the value of  /s. Since the value of " is not known we take the eccentricity calculated
assuming CGC [15] or Glauber (wounded nucleon) initial conditions as two extremes. It is seen
from Fig. 5 that, assuming the CGC initial conditions, the ST R data is well described with twice
the KSS bound,  /s = 2/4⇡. Using the Glauber initial conditions, however, the ST R data is
not described within the range of  /s currently used by the viscous hydrodynamic calculations.
From the deviation from unity one can estimate that the corresponding value of  /s would be
approximately four times the KSS bound. Using the CGC or Glauber initial conditions we find
for the ideal hydro limit of v2/" the value 0.20 ± 0.01 and 0.36 ± 0.07, respectively.

For the CGC initial conditions the value of h approximately matches the EoS used by Luzum
and Romatschke [13]). This is illustrated in Fig. 6 where the centrality dependence of v2 [14] is
well described by CGC initial conditions, a value of h ⇡ 0.2 and  /s = 2/4⇡.

Using viscous hydrodynamics with these CGC initial conditions, E S, and magnitude of
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from the fit. We conclude that our parameterization yields curves that depend on the value of
 /s but are roughly independent of the E S and ". However it turns out that if the EoS is very
di erent (e.g. not incorporating a phase transition) this scaling does break down (not shown).

Using Eq. 1, we can now compare the various viscous hydrodynamical results with data and
estimate the value of  /s. Since the value of " is not known we take the eccentricity calculated
assuming CGC [15] or Glauber (wounded nucleon) initial conditions as two extremes. It is seen
from Fig. 5 that, assuming the CGC initial conditions, the ST R data is well described with twice
the KSS bound,  /s = 2/4⇡. Using the Glauber initial conditions, however, the ST R data is
not described within the range of  /s currently used by the viscous hydrodynamic calculations.
From the deviation from unity one can estimate that the corresponding value of  /s would be
approximately four times the KSS bound. Using the CGC or Glauber initial conditions we find
for the ideal hydro limit of v2/" the value 0.20 ± 0.01 and 0.36 ± 0.07, respectively.

For the CGC initial conditions the value of h approximately matches the EoS used by Luzum
and Romatschke [13]). This is illustrated in Fig. 6 where the centrality dependence of v2 [14] is
well described by CGC initial conditions, a value of h ⇡ 0.2 and  /s = 2/4⇡.

Using viscous hydrodynamics with these CGC initial conditions, E S, and magnitude of
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If the models match the data depends strongly on 
what the true eccentricity is (still an open question)
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collision energy dependence of the elliptic flow 
shows indication of changing slope
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kinetic freeze-out

STAR Preliminary 
STAR Preliminary STAR Preliminary 

! " Ξ

spectra a various particles follow trend expected 
from a boosted “thermal” system
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kinetic freeze-out
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The increase of collective flow with collision 
energy?

Elliptic flow increases from RHIC to LHC 
collision energies about 30% 

Detailed measurements of v2{4} at RHIC 
in the beam energy scan combined with 
the LHC measurements show tantalising 

evidence for a change in slope.

 (GeV)NNs
1 10 210 310

2v

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ALICE Phys. Rev. Lett. 105, 252302 (2010)

STAR Phys. Rev. C. 86, 054908 (2012)

centrality 20-30%
charged particles

 E877{2}2v
 PHOBOS{2}2v
 PHENIX{2}2v
 STAR{4}2v
 ALICE{4}2v
 CMS{2}2v
 ATLAS{2}2v

)c (GeV/
T
p

0 1 2 3 4 5

{4
}

2v

0

0.05

0.1

0.15

0.2

0.25
ALICE Phys. Rev. Lett. 105, 252302 (2010)
STAR Phys. Rev. C. 86, 054908 (2012)
charged particles, centrality 20-30%

ALICE 2.76 TeV
STAR 200 GeV
STAR 62.4 GeV
STAR 39 GeV
STAR 27 GeV
STAR 19.6 GeV
STAR 11.5 GeV
STAR 7.7 GeV

The pT-differential elliptic flow also 
increases with collision energy but 

difference is small over two orders of 
magnitude   

Is this expected/understood?
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In the hydro and blast-wave picture 
particles have a common temperature and flow velocity at freeze-out. 

The difference in pT-differential elliptic flow depends mainly on one 
parameter: the mass of the particle
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mass hierarchy follows hydrodynamic and blast-wave picture at low pT!

ALICE  arXiv:1405.4632STAR QM2014
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hydro and blast-wave picture 
particles have a common temperature and flow velocity 

larger radial flow increases mass splitting
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while the pT-differential charged particle v2 changes very little over two 
orders of magnitude the v2 of heavier particles clearly shows the effect of 

the larger collective flow at higher collision energies

ALICE  arXiv:1405.4632 STAR QM2014
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Elliptic flow as function of collision energy 
can be qualitatively understood in terms 

of a boosted thermal system 

ALICE  arXiv:1405.4632 STAR QM2014
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pure viscous hydrodynamics  VISH2+1, status at QM2011

ALICE  arXiv:1405.4632 ALICE  arXiv:1405.4632

Viscous hydrodynamics predictions worked reasonably well for more peripheral 
collisions 40-50% 

For more central collisions, 10-20%, the radial flow seems to be under-predicted 
as the protons deviate a lot and this was part of the proton puzzle (the new data 

plotted here shows this is not just for protons but all heavy particles)  
can this be understood by a more dissipative hadronic phase (model with a 

hadron cascade)? 
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Viscous hydrodynamics and the effect 
of the hadronic cascade 
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VISH2+1 viscous hydrodynamics 
“standard” mass scaling

VISHNU viscous hydrodynamics + 
hadron cascade 

mass scaling broken, 
depending on individual hadronic re-
interaction cross sections (pion wind 

pushing the protons) 
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VISHNU viscous hydrodynamics + hadron cascade 
big effect for the protons! 

mass scaling broken, 
depending on individual hadron-hadron re-interaction cross sections 
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Viscous hydro +hadron cascade improves the Kaon v2 
It increases the push for the protons but actually over does it 
It breaks the mass scaling and is incompatible with the data 
It does a worse job than “simple” viscous hydrodynamics!! 

over estimating effect of hadronic cascade? 
or is the model lacking pre-equilibrium flow (AdS/CFT, CGC, …..)?

ALICE  arXiv:1405.4632 ALICE  arXiv:1405.4632
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VISHNU does not match with any of the baryons including the Ω’s 

ALICE  arXiv:1405.4632

)c (GeV/
T
p

0 0.5 1 1.5 2 2.5 3 3.5

2v

0

0.05

0.1

0.15

0.2

0.25  = 2.76 TeV (ALICE preliminary)NNsPb-Pb 
VISHNU Phys. Rev. C89, 034919 (2014)
centrality 10-20%

±π
0 + K±K

pp + 
Λ + Λ

+Ξ + -
Ξ

+Ω + -
Ω
VISHNU



φ-meson elliptic flow
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Individual hadronic cross sections matter  
The φ-meson calculations show clear differences (expected because this is 

put in the model, not a priory clear if this has anything to do with reality)! 
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H. Song, S. Bass, U.W. Heinz, Phys. Rev. C89 034919 (2014)
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The φ-meson might behave differently 
also in data! 

ALICE  arXiv:1405.4632
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the mass ordering is also observed for higher harmonics 



What do we measure?
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We do not know the reaction plane ψR or in more general ψn

We can calculate these observables only using correlations

vn ⌘ hein('� n)i

hhein('1�'2)ii = hhein('1)iihhein('2)ii+ hhein('1�'2)ici
zero for symmetric detector when averaged over many events

hhein('1�'2)ii = hhein('1� n�('2� n))ii
= hhein('1� n)ihe�in('2� n)ii
= hv2ni

when only ψn correlations are present



What do we measure?
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Build cumulants with multi-particle correlations (Ollitrault and 
Borghini, 2000) 

got rid of 2-particle correlations not related to collective flow
however now we measure higher moment moments of the 

distribution



What do we measure?
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if the fluctuations are small we 
can say for any distributions 

that the various flow 
estimates follow:



Fluctuations
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What do we measure?

• small fluctuations easy but not much info 

• need the underlying pdf!
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Fluctuations
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Bessel-Gaussian

ε0 is the anisotropy versus the reaction 
plane and σ the fluctuations. 

Works for mid-central collisions, not 
expected to work for peripheral collisions 

because not constraint to 1 
this distribution predict that v3{4}=0

Power-law distribution

α quantifies the fluctuations, this function 
has no ε0 therefore only describes the 

response due to fluctuations

Elliptic Power distribution

α and ε0 are the ingredients with same 
definition as in previous distributions
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In 0-5% all three functions work rather 
well. This is understood, ε0 is small and α 
is large. Elliptic Power turns into a Bessel 

Gaussian and with ε0 small the 
anisotropy versus the reaction plane and 

power law also works. For more 
peripheral collisions the Elliptic Power is 
the only distributions which works well
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ε3, v3 dominated by fluctuations. For 
more central collisions all three functions 
work rather well. Again this is understood 
Bessel Gaussian fails for more peripheral 

due to lack of constraint < 1. The fact 
that ε3{4} and v3{4} are non-zero 
completely excluded the Bessel 

Gaussian
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Event shape engineering in Pb–Pb collisions at √sNN = 2.76 TeV ALICE Collaboration
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Fig. 3: Measurement of v2{SP} as a function of pT in different centrality classes for the unbiased, the large−q2
and the small−q2 samples. Only statistical uncertainties are plotted (systematic uncertainties are smaller than the
markers).
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are plotted (systematic uncertainties are smaller than the markers).

11

Can use the fluctuations to select events with different shapes at fixed centralities 
Perfect tool to test the response of the system outside of our normal selection on 

centrality and/or collision system
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Event shape engineering in Pb–Pb collisions at √sNN = 2.76 TeV ALICE Collaboration
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Fig. 3: Measurement of v2{SP} as a function of pT in different centrality classes for the unbiased, the large−q2
and the small−q2 samples. Only statistical uncertainties are plotted (systematic uncertainties are smaller than the
markers).
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Event shape engineering in Pb–Pb collisions at √sNN = 2.76 TeV ALICE Collaboration
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Fig. 12: Ratio of the pT distribution of identified charged hadrons in the large−q2 (top) and small−q2 (bot-
tom) sample to the unbiased sample (qTPC2 selection), in 30-40% centrality class. Lines: ratio of the blast-wave
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As discussed in Sect. 4.1, we conclude that the effect of non-flow is small and that the main factor driving
these observations is the average v2 at mid-rapidity.

The modification on the spectra of identified π , K, and p is reported in Fig. 10 and Fig. 11 for differ-
ent centrality classes. The same pattern measured in the case of non-identified hadrons is observed.
Moreover, a clear mass ordering is seen: the modification is more pronounced for heavier particles. Con-
versely, the spectra in the small−q2 sample are softer. In the case of the V0C selection the analysis was
also repeated in the region |y|< 0.5, yielding consistent results.

These observations suggest that the spectra in the large−q2 (small−q2) sample are affected by a larger

18

The radial flow indeed also changes for 
“identical” collisions which only differ in 

shape 
new and starting field!
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Novel rapidity dependence of directed flow in high energy heavy ion collisions

R.J.M. Snellings(a), H. Sorge(b), S.A. Voloshin(a)∗, F.Q. Wang(a), N. Xu(a)

(a) Nuclear Science Division, LBNL, Berkeley, California 94720, USA
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(February 8, 2008)

For high energy nucleus-nucleus collisions, we show that
a combination of space-momentum correlations characteris-
tic of radial expansion together with the correlation between
the position of a nucleon in the nucleus and its stopping, re-
sults in a very specific rapidity dependence of directed flow:
a reversal of sign in the mid-rapidity region. We support our
argument by RQMD model calculations for Au+Au collisions
at

√
s = 200 AGeV.

PACS numbers: 25.75.-q, 25.75.Ld, 25.75.Dw, 25.75.Gz,
24.10.Lx

The study of anisotropic flow in high energy nuclear
collisions has attracted increasing attention from both ex-
perimentalists and theorists [1–4]. The rich physics of di-
rected and elliptical flow [5–13] is due to their sensitivity
to the system evolution at early time. Anisotropic flow
in general is also sensitive to the equation of state [1,10]
which governs the evolution of the system created in the
nuclear collision.

The collective expansion of the system created during a
heavy-ion collision implies space-momentum correlation
in particle distributions at freeze-out. Simplified, this
means that particles created on the left side of the system
move in the left direction and particles created on the
right side move in the right direction (on average). We
will show that the rapidity dependence of directed flow
of nucleons and pions can address this space-momentum
correlation experimentally.

A sketch of a medium central symmetric heavy-ion col-
lision is shown in Fig. 1, from before the collision (a,b)
to the resulting distributions of ⟨x⟩ and ⟨px⟩ shown in
(d). In Fig. 1a the projectile and target are shown before
the collision in coordinate space. In Fig. 1b the overlap
region is magnified and the “spectators” are not shown.
It shows in a schematic way the number of nucleons and
their position in the x–z plane (where x̂ is the impact
parameter direction). Projectile nucleons (light color) at
negative x suffer more rapidity loss than those at positive
x, ending up closer to mid-rapidity. Assuming a positive
space-momentum correlation (as indicated in Fig. 1c),
these nucleons have negative ⟨px⟩, while those at positive
x have positive ⟨px⟩. This results in a wiggle structure in
the rapidity dependencies of ⟨x⟩ and ⟨px⟩ which is shown
schematically in Fig. 1d.

The shape of the wiggle, both the magnitude of ⟨px⟩
and the rapidity range, depends on the strength of the
space-momentum correlation, the initial beam-target ra-

pidity gap and the amount of stopping. Therefore, the
dependence of the wiggle on the collision centrality, sys-
tem size and center of mass energy may reveal impor-
tant information on the relation between radial flow and
baryon stopping. In addition, it has been shown that the
magnitude of ⟨px⟩ depends on the nuclear matter equa-
tion of state [14].

FIG. 1. A schematic sketch of a medium central sym-
metric heavy-ion collision in progressing time (a),(c) and the
rapidity distribution of ⟨px⟩ and ⟨x⟩ in (d). In (b) the over-
lap region is magnified and the “spectators” are not shown In
these figures x is the coordinate along the impact parameter
direction and z is the coordinate along the projectile direction
(for a more detailed description see text).

The above picture changes for collisions at lower ener-
gies, where there is no clear rapidity separation between
projectile and target nucleons at freeze-out, because nu-
cleons cross over mid-rapidity. Moreover, when the time
for the nuclei to pass each other becomes long relative to
the characteristic time scale for particle production, the
interactions between particles and spectators (so-called
shadowing) become important. This has been pointed
out by many people and recently in [8,15,16]. This is
consistent with the results of heavy ion collisions, in the
2 to 158 AGeV energy range, where the experimental ob-
served slope around mid-rapidity in directed flow shows
a trend from a positive value at 2 AGeV [3] to almost
zero at 158 AGeV [4].

Note that the change of sign of directed flow
at mid-rapidity has been discussed for Ca+Ca colli-
sions at 350 AMeV [17] and for Au+Au collisions at
11 AGeV [11,12,18]. However, the physical origins on
which these predictions are based are different from what
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we discuss in this Letter. In 350 AMeV Ca+Ca colli-
sions the wiggle originates from a combination of repul-
sive nucleon-nucleon collisions and an attractive mean
field. The repulsive nucleon-nucleon collisions dominate
at the mid-rapidity region and lead to a positive slope
for ⟨px⟩ versus rapidity. The attractive mean field dom-
inates at beam and target rapidities and leads to a neg-
ative slope. In 11 AGeV Au+Au collisions the wiggle is
caused by the longitudinal hydrodynamic expansion of
a tilted source [11]. It has been noticed that in hydro
calculations the wiggle only appeared if a QGP equa-
tion of state is used. The QGP equation of state is a
prerequisite to reach the stopping needed to create this
tilted source. The predicted wiggle in this Letter does
not assume a QGP equation of state. The other main
difference is that in our prediction we specifically assume
in-complete stopping.

The arguments used in this Letter which lead to a
change of sign of directed flow at mid-rapidity are valid
on general grounds. However, to test the picture quanti-
tatively we study Au+Au collisions at

√
s = 200 AGeV

in an impact parameter range b=5–10 fm, using the Rel-
ativistic Quantum Molecular Dynamics (RQMD v2.4)
model in cascade mode [19].

To characterize directed flow, we use the first Fourier
coefficient [4,20], v1, of the particle azimuthal distribu-
tion. At a given rapidity and transverse momentum
the coefficient is determined by v1 = ⟨cosφ⟩, where φ
is the azimuthal angle of a particle relative to the re-
action plane angle (x̂ direction in Fig. 1). Similarly a
Fourier coefficient can be determined in coordinate space,
s1 = ⟨cosφs⟩ [16], where φs is the azimuthal angle of a
particle, determined from the freeze-out coordinates x
and y, relative to the reaction plane angle. Figure 2
shows the RQMD calculations of v1 and s1 for nucleons
and pions in Au+Au collisions at RHIC energy. Indeed,
the shape at mid-rapidity for nucleons is consistent with
the picture described above: both v1 and s1 show a neg-
ative slope at mid-rapidity. For larger rapidities the s1

values leave the ordinate scale.
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FIG. 2. RQMD calculations of v1 (filled circles) and s1

(open circles) for nucleons (left panel) and pions (right panel).

Pions are produced particles and their space-rapidity
correlation is different from that of nucleons shown in
Fig. 1d. Due to the asymmetry in the numbers of col-
liding target and projectile nucleons, the pions produced
at positive x shift toward positive rapidity. The pions
produced at negative x shift toward negative rapidity.
This results in a positive space-rapidity correlation with-
out a wiggle, see Fig. 2b. (open circles). Due to the
space-momentum correlation, the momentum distribu-
tion tends to follow the space distribution. This leads to
the positive slope of v1 at mid-rapidity for the pions, see
Fig. 2b. (filled circles). However, shadowing by nucleons
is also important in the formation of pion directed flow.
The contribution is relatively small in the mid-rapidity
region, where in high energy nucleus-nucleus collisions
the nucleon to pion ratio is small. At beam/target ra-
pidity the shadowing becomes dominant, this explains
why s1 has the opposite sign from v1 for pions close to
beam/target rapidity.

In this Letter we have shown that the combination of
space-momentum correlations characteristic of radial ex-
pansion together with the correlation between the posi-
tion of a nucleon in the nucleus and its stopping, results
in a wiggle in the rapidity dependence of directed flow
in high energy nucleus-nucleus collisions. Moreover, the
amount of stopping and the space-momentum correla-
tion depend on the equation of state and this affects the
strength of the wiggle around mid-rapidity [14]. Finally,
because the wiggle appears at mid-rapidity, it is accessi-
ble by the current SPS experiment NA49 and the near
future RHIC experiments. The study of its dependence
on collision centrality, system size and the center of mass
energy may reveal important information on the relation
between collective radial flow and baryon stopping.

We are grateful to G.E. Cooper, Y. Pang, S. Panitkin,
A.M. Poskanzer, G. Rai, H.G. Ritter and H. Ströbele for
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stopping can be important for how the initial spatial distributions looks like



Rapidity Dependence
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Small systems; pA collisions

• a reference for AA (cold nuclear matter effects) 

• a ideal system for CGC studies
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pA collisions

• collective effects in pA? 

• who ordered that?
58

Leonardo Milano - CERN  ICPAQGP 2015 - Kolkata 

Few or many particle correlation?
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No modification in p-Pb

42

ALICE results on charged particles 
consistent with no modifications up to pT = 50 GeV/c

same conclusion from 
reconstructed jets

p-Pb

p-Pb confirms that 
the strong suppression 
is a final-state effect 

parton in-medium energy loss

ALICE, PRL 110 (2013) 082302

p-Pb



d+A and 3He+A collisions

• collective effects in dA and 3He+A at RHIC? 

• who ordered that?
59

CMS

ALICE

 (GeV/c)
T

p
0.5 1.0 1.5 2.0 2.5 3.0 3.5

2v

0.05

0.10

0.15

0.20

0.25

pion

proton

0-5% d+Au @ 200 GeV (a)

pion
proton

viscous hydro.
)π/s = 1.0/(4η

 (GeV/c)
T

p
0.5 1.0 1.5 2.0 2.5 3.0 3.5

pion

proton

0-20% p+Pb @ 5.02 TeV (b)



a rose?

• it smells like a rose 

• it pricks like a rose 

• …..
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Collective motion

61

cumulants allow us to see if there are multi-particle correlations 
in the system (cumulants nonzero only mathematical proof) 



Collective motion

62

• therefore to reliably measure flow:

• not easily satisfied: M=200 vn >> 0.07

particle 1 coming from the resonance. Out of 
remaining M-1 particles there is only one which is 
coming from the same resonance, particle 2. 
Hence a probability that out of M particles we will 
select two coming from the same resonance is ~ 
1/(M-1). From this we can draw a conclusion that 
for large multiplicity:

p1

p2



Collective motion
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• therefore to reliably measure flow:

Particle 1 coming from the mini-jet. To select particle 2 we can 
make a choice out of remaining M-1 particles; once particle 2 is 
selected we can select particle 3 out of remaining M-2 particles 
and finally we can select particle 4 out of remaining M-3 
particles. Hence the probability that we will select randomly 
four particles coming from the same resonance is 1/(M-1)(M-2)
(M-3). From this we can draw a conclusion that for large 
multiplicity:

p1

p2

p3 p4



Collective motion
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Few or many particle correlation?
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• collective behaviour in pA! 

• not necessarily hydrodynamics! 

• quantitative question 

• initial state or final state?

Stefan Bass



Who ordered that?
• What can we learn from pA? 

• better theoretical understanding initial state pA compared to AA 

• better experimental constraints on the initial geometry in AA compared to 
pA 

• if both initial state and the final state interactions are important in pA is 
there still a clear preference compared to peripheral AA? 

• new questions to answer 

• d+A and 3He+A are very important to disentangle initial or final state origin! 

• (multi-particle) azimuthal correlations differentially as function of pT and η 
should allow us to also test if there are different regimes where initial state 
or final state effects dominate
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Summary
• clear evidence of the importance of the initial spatial 

distribution (in all gory details) in all the correlations 

• naturally explained if the constituents have strong 
final state interactions 

• some depend non-trivially on the evolution (which 
is well captures in models with final state 
interactions)  

• very rich playground for theorist and experimentalist!
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Anisotropic Flow; ad 
infinitum

Raimond Snellings 

4th International Symposium on Non-equilibrium Dynamics 
30-08 — 05-09-2015 

Giardini Naxos, Sicily,Italy
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Mixed Harmonics and Standard 
Candles

68

v23{ 2} =

hcos(2'1 + 2'2 + 2'3 � 3'4 � 3'5)i
v32

v3{ RP} = hhcos 3('� RP)ii
= hhcos 3('� 3) cos 3( 3 � RP)ii
= hv3 hcos 3( 3 � RP)ii
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Alver, Gombeaud, Luzum & Ollitrault, Phys. Rev. C82 034813 (2010)
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Mixed Harmonics and Standard 
Candles
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v23{ 2} =

hcos(2'1 + 2'2 + 2'3 � 3'4 � 3'5)i
v32

v3{ RP} = hhcos 3('� RP)ii
= hhcos 3('� 3) cos 3( 3 � RP)ii
= hv3 hcos 3( 3 � RP)ii

hcos(n1'1 + ...+ nk'k)i
= hvn1 ...vnk cos(n1 n1 + ...+ nk nk)i

hcos(4'1 � 2'2 � 2'3)i = hv4v22 cos(4 4 � 4 2)i,
hcos(6'1 � 3'2 � 3'3)i = hv6v23hcos(6 6 � 6 3)i


