Two topics on event anisotropies: hard parton contribution and event shape sorting

Boris Tomášik

Univerzita Mateja Bela, Banská Bystrica, Slovakia and FNSPE, České vysoké učení technické, Praha, Czech Republic

boris.tomasik@umb.sk

all original results in this presentation obtained by

Martin Schulc Renata Kopečná

FNSPE, ČVUT, Praha

Giardini Naxos, 1.9.2015

Boris Tomášik (Univerzita Mateja Bela)

Event anisotropies

Anisotropic expansion

(only nuclear collisions and assume non-flow effects under control)

- generic effect: blue-shift
 - \Rightarrow more particles and higher p_t in direction of stronger transverse flow
- link between the observable spectrum and the expansion of the fireball
- expansion results from the pressure gradients
- initial conditions evolved into final distribution—nothing added

Mapping of ε_n 's and v_n 'n

spatial anisotropy

$$arepsilon_{m,n} e^{in \Psi_{m,n}} = \int r \, dr \, d\phi \, r^m e^{in \phi} \,
ho(r,\phi)$$

use $\varepsilon_n = \varepsilon_{n,n}$

- to a very good extent (ν_n) = k(ε_n)
 [F.G. Gardim *et al.*, Phys. Rev. C 85 (2012) 024908]
- also mapping between the values in individual events and between probability distributions
 valid for various initial conditions and ideal as well as viscous hydro [H. Niemi *et al.*, Phys. Rev. C 87 (2013) 54901]

Mapping of ε_n 's and v_n 'n – cont'd

[H. Niemi et al., Phys. Rev. C 87 (2013) 054901]

Question

Does the hydrodynamical evolution really not contribute to the fluctuations of flow anisotropies?

Answer

We demonstrate such a mechanism based on deposition of *momentum* from a number of hard partons into the fluid.

Momentum deposition from hard partons

- At the LHC there is copious production of hard partons may have more than one pair in single event.
- Their momentum is deposited into medium over some time span
 ⇒ collective flow, wakes, streams
- Anisotropic flow event by event
- Elliptic flow after summation over all events.

Anisotropic flow from isotropic hard partons

Streams are more likely to merge if they are directed out of reaction plane

- \Rightarrow less contribution to flow out of plane
- \Rightarrow enhance v_2 correlated with the reaction plane
- \Rightarrow also contribute to v_3

Check the idea with a toy model

- Streams represented by drops
- Pairs of drops back-to-back (with some k_t smearing)
- Drops merge after they meet
- Size of the drop represents the radius of the stream
- Pions evaporate from droplets (T = 175 MeV)

Toy model – results

Azimuthal distribution of hadrons

[B. Tomášik, P. Lévai: J.Phys.G 38 (2011) 095101]

[B. Betz et al.: Phys. Rev. C 79 (2009) 034902]

Ideal hydrodynamics with source term

$$\partial_{\mu}T^{\mu\nu} = J^{\nu}$$

$$J^{\nu} = \sum_{i} \frac{1}{(2 \pi \sigma_i^2)^{3/2}} \exp\left(-\frac{(\vec{x} - \vec{x}_{\text{jet},i})^2}{2 \sigma_i^2}\right) \left(\frac{dE_i}{dt}, \frac{d\vec{P}_i}{dt}\right)$$

with $\sigma = 0.3$ fm

Test of the concept: static medium

The stream includes about 90% of hard parton momentum Two streams meet perpendicularly Plot momentum density

[M. Schulc, B. Tomášik: J. Phys. G 40 (2013) 125104]

Hydrodynamic simulations of nuclear collisions

- 3+1D ideal hydrodynamics
- EoS from P. Petreczky, P. Huovinen: Nucl. Phys. A 897 (2010) 26
- smooth initial energy density scaled with

$$W(x, y; b) = (1 - \alpha)n_w(x, y; b) + \alpha n_{\text{bin}}(x, y; b)$$

with $\alpha = 0.16$, $\varepsilon(0, 0, 0) = 60 \text{ GeV}/\text{fm}^3$ at $\tau_0 = 0.55 \text{ fm}/c$ rapidity plateau over 10 units of rapidity

$$\frac{dE}{dx} = \left. \frac{dE}{dx} \right|_0 \frac{s}{s_0}$$

fluctuating number of jet pairs

Generation of hard partons

•
$$p_t$$
 according to

$$\frac{1}{2\pi} \frac{d\sigma_{NN}}{p_t dp_t dy} = \frac{B}{(1 + p_t/p_0)^n}$$
 $B = 14.7 \text{ mb/GeV}^2, p_0 = 6 \text{ GeV}, n = 9.5$

- back-to-back in p_t
- spatial distribution according to Glauber model for binary collisions

Illustration: evolution of energy density

Evolution of an event with four pairs of jets at the beginning.

frames follow with time delay 1 fm/c

Results from ultra-central collisions

Anisotropy coefficients 0.015 ₫ ₫ compare: 0.01 dE/dx = 7 GeV/fm₫ \sim * * * * * dE/dx = 4 GeV/fm击 0.005 hot spots smooth initial conditions 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Pt[GeV/c] 0.01 0.008 Ħ Ħ 0.008 0.006 0.006 ₫ E ₫ Š 0.004 **x x X X** 0.004 Φ 0.002 0.002 Ж ₽ 0 0

> 1.6 1.8 2

0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 0 1 P_t[GeV/c]

0

0.2 0.4 0.6 0.

.8

P.[GeV/c]

₫ ₫

 \overline{X}

₫ ₫

₫

₫

Results from 30-40% centrality

- Y. Tachibana, T. Hirano: Phys. Rev. C **90** (2014) 021902 reponse of medium to only one dijet
- R.P.G. Andrade, J. Noronha, G. Denicol: Phys. Rev. C 90 (2014) 024914 one dijet, 2+1D hydrodynamics
- S. Floerchinger and K. Zapp: Eur. Phys. J. C **74** (2014) 3189 1+1D hydrodynamics

- How does one distinguish initial state generated anisotropies from those generated on the way (from jets or dynamical fluctuations)? Get v₂ with different methods... Correlations of various v_n's...
- How much anisotropy can one produce during evolution in order not to produce too much entropy?
- How the response to jets changes in viscous hydrodynamics?

Preliminary summary

- Momentum deposition from hard partons gives large contribution to anisotropic flow
 ⇒ must be included in simulations
- The interplay of many induced streams is important
- Outlook: simulations with viscous hydrodynamics and fluctuating initial conditions

M. Schulc, B. Tomášik: Phys. Rev. C **90** (2014) 064910 [arxiv:1409.6116]

Event shapes

How to do Event Shape Engineering among these shapes...?

... ordered

- in similar events the evolution is likely to be similar
- analyse samples of similar events!
- How to select similar events?

Event Shape Sorting: the algorithm

We will sort events according to their histograms in azimuthal angle.

- (Rotate the events appropriately)
- Sort your events as you wish
- Oivide sorted events into quantiles (we'll do deciles)
- Oetermine average histograms in each quantiles
- Solution For each event i calculate Bayesian probability P(i|μ) that it belongs to quantile μ
- **6** For each event calculate average $\bar{\mu} = \sum_{\mu} \mu P(i|\mu)$
- Sort events according to their values of $ar{\mu}$
- If order of events changed, return to 3. Otherwise sorting converged.

S. Lehmann, A.D. Jackson, B. Lautrup, arXiv:physics/0512238 S. Lehmann, A. D. Jackson and B. E. Lautrup, Scientometrics **76** (2008) 369 [physics/0701311 [physics.soc-ph]]

Average histograms for random sorting 'before'

Only fluctuating v_2

Average histograms for random sorting 'after'

Only fluctuating v_2

Toy Model: q_2 sorting

- Generated 5000 events up to v_2 , $v_2 = aM^2 + bM + c$
- *M* ∈ (300, 3000)
- Initial rotation: Ψ_2

• Sort: *q*₂

Elliptic flow for q_2 sorting

- Obvious linear dependence
- v₂ might be a better measure than q₂

More realistic: all orders of anisotropy

No correlation with any of the conventional measures

Boris Tomášik (Univerzita Mateja Bela)

Giardini Naxos, 1.9.2015 28 / 30

More realistic anisotropy: sorting

Summary

- Event Shape is determined in more complicated way than single variable can characterize
- Try Event Shape Sorting (ESS)
- ESS might be useful for Single Event Femtoscopy
- Hard parton momentum deposition may give important contribution to flow anisotropies. This will be important to account for when extracting transport properties.

R. Kopečná, B. Tomášik: arxiv:1507.XXXXX M. Schulc, B. Tomášik: Phys. Rev. C **90** (2014) 064910 [arxiv:1409.6116]