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Anisotropic expansion

(only nuclear collisions and assume non-flow effects under control)

generic effect: blue-shift
⇒ more particles and higher pt in direction of stronger transverse flow

link between the observable spectrum and the expansion of the fireball

expansion results from the pressure gradients

anisotropic expansion ⇐ anisotropic pressure gradients in initial
conditions

initial conditions evolved into final distribution—nothing added
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Mapping of εn’s and vn’n

spatial anisotropy

εm,ne
inΨm,n =

∫
r dr dφ rme inφ ρ(r , φ)

use εn = εn,n

to a very good extent 〈vn〉 = k〈εn〉
[F.G. Gardim et al., Phys. Rev. C 85 (2012) 024908]

also mapping between the values in individual events and between
probability distributions
valid for various initial conditions and ideal as well as viscous hydro
[H. Niemi et al., Phys. Rev. C 87 (2013) 54901]
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Mapping of εn’s and vn’n – cont’d

NIEMI, DENICOL, HOLOPAINEN, AND HUOVINEN PHYSICAL REVIEW C 87, 054901 (2013)

observables in an event-by-event fluid-dynamical description
[7,9].

On the other hand, if fluid dynamics can be applied to de-
scribe individual ultrarelativistic heavy-ion collisions, it must
be able to describe vn in every collision, not only the average
⟨vn⟩ev. Therefore it must be able to reproduce the distribution
P(vn) of vn in an ensemble of events too. To confirm the
applicability of fluid dynamics to describe the expansion stage
of heavy-ion collisions, it is thus not enough to check whether
the event-averaged values of vn agree with the data, but one
must also check whether their distributions, P(vn), match
what is experimentally observed. Recently, the distributions
of v2, v3, and v4 were measured at the LHC by the ATLAS
collaboration [10]. Also, the first fluid-dynamical calculations
of these distributions were performed by Gale et al. [11].

In this paper, we study the event-by-event probability
distribution of the Fourier coefficients vn, P (vn), and how they
are correlated with the initial state anisotropies ϵn event by
event. The goal of this paper is not to attempt a comparison with
experimental data, but to explore how these distributions and
correlations are affected by the fluid viscosity and initialization
of the system. In this way, it will be possible to understand what
can be learned by measuring such event-by-event distributions.

In the following we explain our fluid dynamical model
in Sec. II, and show our results in Sec. III. Section III A
is dedicated to an analysis of the event-by-event correlation
between initial condition and flow anisotropy, while in
Secs. III B and III C we show our results for probability
distributions of scaled anisotropy δvn, P (δvn), and linear
correlation coefficients c(vn, vm), respectively. In Sec. IV, we
summarize our findings and make our conclusions.

II. MODEL

To generate the initial states event by event, we use a
Monte Carlo Glauber model as implemented in Ref. [9]. In
this model, nucleons are distributed into nuclei according to
Woods-Saxon distribution. NN correlations and finite size
effects are neglected since they have a negligible effect on
the anisotropy coefficients [12]. In an event with a given
impact parameter, nucleons from different nuclei are assumed
to collide when their transverse distance d is small enough,
i.e., when d2 < σNN/π .

We consider two initial conditions, in which the initial
entropy density, s, at τ0 = 1 fm, is evaluated as

s(x, y) = W

Npart,bin∑

i=1

exp{−[(x − xi)2 + (y − yi)2]/(2σ 2)}, (4)

where xi and yi are the spatial coordinates of either wounded
nucleons (initial condition sWN) or binary collisions (initial
condition sBC), given by the Monte Carlo Glauber model.
W is a normalization constant fixed to provide the observed
multiplicity and σ = 0.8 fm is the spatial scale of a wounded
nucleon or a binary collision. The centrality classes are
determined according to the number of binary collisions (for
initial condition sBC) or the number of participants (for initial
condition sWN). The initial fluid velocity and shear-stress
tensor are set to zero and we neglect the effects of bulk
viscosity.

For the fluid-dynamical evolution, we use the model
previously employed in Ref. [13]. We describe the time
evolution of the fluid in the central rapidity region assuming
boost invariance and a zero baryochemical potential. The
equations of motion are given by the conservation laws for
energy and momentum:

∂µT µν = 0, (5)

where T µν = (ε + p)uµuν − gµνp + πµν , with ε, p, uµ, and
πµν being the energy density, the thermodynamic pressure, the
fluid four-velocity, and the shear-stress tensor, respectively.
We use the lattice QCD and hadron resonance gas based
equation of state s95p-PCE-v1 [14] with chemical freeze-out
at temperature Tchem = 150 MeV. The evolution equation of
the shear-stress tensor is given by transient relativistic fluid
dynamics [15,16]:

)
µν
αβ τπDπαβ+πµν = 2ησµν − 4

3
τππµνθ − 10

7
τπ)

µν
αβσ α

λ πβλ

+ 74
315η

τπ)
µν
αβπα

λ πβλ, (6)

where η is the shear viscosity coefficient, D = uµ∂µ is
the comoving time derivative, σµν = )

µν
αβ ∂αuβ is the shear

tensor, θ = ∂µuµ is the expansion rate, and )
µν
αβ = ()µ

α)ν
β +

)ν
α)

µ
β − 2/3)µν)αβ)/2, with )µν = gµν − uµuν . The trans-

port coefficients of the nonlinear terms on the right-hand side of
the Eq. (6) were taken in the massless limit, in the 14-moment

FIG. 1. (Color online) ϵ2 and v2 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.
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FIG. 2. (Color online) ϵ3 and v3 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.

approximation, and the relaxation time was assumed to be
τπ = 5η/(ε + P ) [16,17]. Here, we have not included the
nonlinear terms related to the vorticity tensor. Note that the
last two terms in Eq. (6) were not included in our previous
studies [13]. While such terms can have a significant effect
on many observables, they are not relevant for the results
discussed in this paper. We shall leave a detailed investigation
of the effect of such terms to a future work. The equations of
motion were solved numerically using the SHASTA algorithm,
whereas the evolution equations for shear stress [Eq. (6)]
were solved using simple finite differencing scheme. For more
details see Refs. [13,18].

The hadron spectra are calculated with the Cooper-Frye
freeze-out procedure [19] using the decoupling temperature
Tf = 100 MeV, which was shown to give reasonable agree-
ment with both the pT spectrum and ⟨v2⟩ev for pions at RHIC
when a temperature-dependent η/s was used, see Ref. [13].
In this work, we use constant values of viscosity, η/s = 0 and
0.16. Nevertheless, the pT spectrum and ⟨v2⟩ev remain close to
what is actually observed at RHIC. Since our main purpose is
not the comparison to experimental observables, we adjusted
only the initial entropy density to fit the observed multiplicity,
but kept all the other parameters unchanged. Finally, we use
Israel and Stewart’s 14-moment ansatz for the dissipative
correction to the local equilibrium distribution function,

δfi = f0i

p
µ
i pν

i πµν

2T 2(ε + p)
, (7)

where f0i = {exp[(uµp
µ
i − µi)/T ] ± 1}−1 is the local equi-

librium distribution function, with the index i indicating
different hadron species and p

µ
i the four-momentum of the

corresponding hadron. After calculating the thermal spectra,
we include the contribution from all two- and three-particle
decays of unstable resonances up to 1.1 GeV mass.

It should be noted that because we do not generate particle
ensembles at any point we always know the direction of the
event plane and the magnitude of vn exactly. Experimentally,
one measures a finite number of particles, which smears the
observed distribution of vn. However, the final experimental
result for the vn distributions undergoes an unfolding pro-
cedure that is supposed to remove such a smearing [10].
Therefore, for a comparison with data, one can use the
particle distributions computed with fluid dynamics without
generating an ensemble of particles. A more detailed way
would be to generate the particle ensembles and apply the same
complicated unfolding procedure used by the experimentalist
to obtain the vn distribution, but this procedure would be an
unnecessary complication for the purpose of this work.

III. RESULTS

In this work we consider Au + Au collisions at√
sNN = 200 GeV. All the results shown in this paper

are for positively charged pions. For each centrality class a
total of 2000 events were computed. The Fourier coefficients
and the initial-state anisotropies were calculated according to

FIG. 3. (Color online) ϵ4 and v4 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.
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FIG. 2. (Color online) ϵ3 and v3 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.

approximation, and the relaxation time was assumed to be
τπ = 5η/(ε + P ) [16,17]. Here, we have not included the
nonlinear terms related to the vorticity tensor. Note that the
last two terms in Eq. (6) were not included in our previous
studies [13]. While such terms can have a significant effect
on many observables, they are not relevant for the results
discussed in this paper. We shall leave a detailed investigation
of the effect of such terms to a future work. The equations of
motion were solved numerically using the SHASTA algorithm,
whereas the evolution equations for shear stress [Eq. (6)]
were solved using simple finite differencing scheme. For more
details see Refs. [13,18].

The hadron spectra are calculated with the Cooper-Frye
freeze-out procedure [19] using the decoupling temperature
Tf = 100 MeV, which was shown to give reasonable agree-
ment with both the pT spectrum and ⟨v2⟩ev for pions at RHIC
when a temperature-dependent η/s was used, see Ref. [13].
In this work, we use constant values of viscosity, η/s = 0 and
0.16. Nevertheless, the pT spectrum and ⟨v2⟩ev remain close to
what is actually observed at RHIC. Since our main purpose is
not the comparison to experimental observables, we adjusted
only the initial entropy density to fit the observed multiplicity,
but kept all the other parameters unchanged. Finally, we use
Israel and Stewart’s 14-moment ansatz for the dissipative
correction to the local equilibrium distribution function,

δfi = f0i

p
µ
i pν

i πµν

2T 2(ε + p)
, (7)

where f0i = {exp[(uµp
µ
i − µi)/T ] ± 1}−1 is the local equi-

librium distribution function, with the index i indicating
different hadron species and p

µ
i the four-momentum of the

corresponding hadron. After calculating the thermal spectra,
we include the contribution from all two- and three-particle
decays of unstable resonances up to 1.1 GeV mass.

It should be noted that because we do not generate particle
ensembles at any point we always know the direction of the
event plane and the magnitude of vn exactly. Experimentally,
one measures a finite number of particles, which smears the
observed distribution of vn. However, the final experimental
result for the vn distributions undergoes an unfolding pro-
cedure that is supposed to remove such a smearing [10].
Therefore, for a comparison with data, one can use the
particle distributions computed with fluid dynamics without
generating an ensemble of particles. A more detailed way
would be to generate the particle ensembles and apply the same
complicated unfolding procedure used by the experimentalist
to obtain the vn distribution, but this procedure would be an
unnecessary complication for the purpose of this work.

III. RESULTS

In this work we consider Au + Au collisions at√
sNN = 200 GeV. All the results shown in this paper

are for positively charged pions. For each centrality class a
total of 2000 events were computed. The Fourier coefficients
and the initial-state anisotropies were calculated according to

FIG. 3. (Color online) ϵ4 and v4 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.
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FIG. 6. (Color online) ϵ4 and v4 in the 0–5% centrality class using different initializations and viscosities. (a) sBC and η/s = 0, (b) sBC
and η/s = 0.16, and (c) sWN and η/s = 0.16.

(n = 3), and Figs. 3(a) and 3(b) (n = 4). In general, the higher
Fourier coefficients are expected to be more sensitive to the
viscosity [20]. This is also the case in our calculations, and is
confirmed by comparing the relative changes in the coefficients
C2, C3 and C4.

Note that the proportionality constants Cn do not depend
only on the intrinsic properties of the fluid, but also on the
initial conditions. Again something to be expected, since in
the calculations done using averaged initial conditions, the
precise value of the proportionality depended on many details
as discussed in the Introduction.

In Figs. 4 and 5 we show the two-dimensional histograms
of ϵ2 and v2 and of ϵ3 and v3, respectively, in the 0–5%
centrality class. We plot the same cases considered above:
(a) sBC initialization with η/s = 0, (b) sBC initialization with
η/s = 0.16, and (c) sWN initialization with η/s = 0.16. For
n = 2 and n = 3 the linear correlation is still valid. Also,
the effect of shear viscosity and initialization on Cn remain
qualitatively the same. On the other hand, in Fig. 6 the
correlation between ϵ4 and v4 in central collisions is drastically
different from the correlation in the 20–30% centrality class.
In the 0–5% centrality class the linear correlation coefficient
c(ϵ4, v4) becomes much closer to 1 when compared to the
peripheral case. It can be as large as ∼0.81 obtained for the
sWN initialization with η/s = 0.16. This behavior is expected
since in Ref. [22] it was shown that ϵ4 becomes a better
estimator for v4 in central collisions.

We note that the definition of εn is not unique, but we
could use, e.g., entropy density instead of energy density as

a weight or use different powers of r in the definition. We
have checked that these different definitions slightly change
the numerical values of the correlators, and the proportionality
constants Cn, but qualitatively the results are independent of
the precise definition of εn.

B. Distributions of vn

So far the event-averaged values of vn have been extensively
studied. In order to observe what can be learned by looking
at vn probability distributions, it is convenient to remove
the average from the distributions, and study the relative
fluctuations using the scaled variables

δvn = vn − ⟨vn⟩ev

⟨vn⟩ev
, and δϵn = ϵn − ⟨ϵn⟩ev

⟨ϵn⟩ev
. (10)

In this way changes in the probability distributions due to
changes in the average values are removed.

It was shown in the previous subsection that vn and ϵn have
a strong linear correlation for n = 2 and 3. As discussed in the
Appendix, if two variables are linearly correlated, and ⟨d⟩ = 0,
the variances of the relative distributions are equal. Since
viscosity has only a small effect on the correlations of vn and
ϵn, we expect that σ 2

δvn
≈ σ 2

δϵn
, independent of viscosity. In such

a case the information about the fluid response to the initial
geometry is contained in the coefficients Cn controlling the
average ⟨vn⟩ev, while the relative fluctuations of vn originate

FIG. 7. (Color online) Probability distributions: (a) P (δv2) and P (δϵ2), (b) P (δv3) and P (δϵ3), and (c) P (δv4) and P (δϵ4), in the 20–30%
centrality class with sBC initialization and two different values of η/s, η/s = 0, and η/s = 0.16.

054901-5
[H. Niemi et al., Phys. Rev. C 87 (2013) 054901]
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One question and one answer

Question

Does the hydrodynamical evolution really not contribute to the
fluctuations of flow anisotropies?

Answer

We demonstrate such a mechanism based on deposition of momentum
from a number of hard partons into the fluid.
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Momentum deposition from hard partons

At the LHC there is copious production of hard partons – may have
more than one pair in single event.

Their momentum is deposited into medium over some time span
⇒ collective flow, wakes, streams

Anisotropic flow – event by event

Elliptic flow after summation over all events.
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Anisotropic flow from isotropic hard partons

Streams are more likely to merge if they are directed out of reaction plane
⇒ less contribution to flow out of plane
⇒ enhance v2 correlated with the reaction plane
⇒ also contribute to v3
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Check the idea with a toy model

Streams represented by drops

Pairs of drops back-to-back (with some
kt smearing)

Drops merge after they meet

Size of the drop represents the radius of
the stream

Pions evaporate from droplets
(T = 175 MeV)

Boris Tomášik (Univerzita Mateja Bela) Event anisotropies Giardini Naxos, 1.9.2015 8 / 30



Toy model – results

Azimuthal distribution of hadrons

phi
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[B. Tomášik, P. Lévai: J.Phys.G 38 (2011) 095101]
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Hydrodynamic implementation

[B. Betz et al.: Phys. Rev. C 79 (2009) 034902]

Ideal hydrodynamics with source term

∂µT
µν = Jν

Jν =
∑
i

1

(2π σ2
i )3/2

exp

(
−(~x − ~xjet,i )2

2σ2
i

) (
dEi

dt
,
d~Pi

dt

)
with σ = 0.3 fm
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Test of the concept: static medium

The stream includes about 90% of hard parton momentum
Two streams meet perpendicularly
Plot momentum density

y 
[fm
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 0  2  4  6  8  10  12  14

[M. Schulc, B. Tomášik: J. Phys. G 40 (2013) 125104]
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Hydrodynamic simulations of nuclear collisions

3+1D ideal hydrodynamics

EoS from P. Petreczky, P. Huovinen: Nucl. Phys. A 897 (2010) 26

smooth initial energy density scaled with

W (x , y ; b) = (1− α)nw (x , y ; b) + αnbin(x , y ; b)

with α = 0.16, ε(0, 0, 0) = 60 GeV/fm3 at τ0 = 0.55 fm/c
rapidity plateau over 10 units of rapidity

dE

dx
=

dE

dx

∣∣∣∣
0

s

s0

fluctuating number of jet pairs
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Generation of hard partons

pt according to
1

2π

dσNN
ptdpt dy

=
B

(1 + pt/p0)n

B = 14.7 mb/GeV2, p0 = 6 GeV, n = 9.5

back-to-back in pt

spatial distribution according to Glauber model for binary collisions
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Illustration: evolution of energy density

Evolution of an event with four pairs of jets at the beginning.

frames follow with time delay 1fm/c

Hydrodynamical evolution with energy and momentum feeding during the fireball expansion

Martin Schulca and Boris Tomášika,b 

a FNSPE, Czech Technical University, 115 19 Prague, Czech Republic
b Univerzita Mateja Bela, 974 01 Banská Bystrica, Slovakia

Acknowledgement: this work was supported by grant MSM 6840770039, APVV-0050-11 and VEGA 1/0457/12    

We present 3+1D event by event ideal hydrodynamic simulation with implemented influence of hard partons as source terms.
Four-momentum conservation formula with hard partons' source term is following 

Energy-momentum deposited in medium by hard partons is parametrized[1] and scaled by entropy density ratio s/s(0).

The momentum is generated according to the calculated distributions of the produced hard partons in transverse momentum 
and  rapidity. For rapidity distributions at the LHC we assume that it is uniform in the central two units of rapidity. Transverse 
momentum spectra have been calculated and the differential cross section for gluon production in nucleus–nucleus collision was 
parametrized as [2]

where p
0
, B and n are parameters. For a simulation at LHC energies we choose B = 14.7 mbarn/GeV2 , p

0
 = 6 GeV, and n = 9.5. 

The cross section for the production of the leading particle with p
t 
larger than p

m
 is then obtained by integrating equation

The mean total number of leading particles with p
t 
> p

m
 is then

In the last equation we introduced the overlap function

The initial positions of hard partons are distributed according to the density of binary nucleon–nucleon collisions:

Thus, it is more likely to produce a leading parton at the centre of the overlapping zone than at its edges.
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4. CONCLUSIONS 

✔ Fluctuations induced by jets survive until the end of hydrodynamic simulation.
✔ Jets influence does contribute to elliptic flow generation on the level up to 0.02.
✔ Hydrodynamic simulation confirms the scenario by Tomášik and Lévai [2]. 

3. RESULTS

Example of one typical MC central event at LHC, energy density transverse slices shown are for rapidity η=0. First profile is taken after time t = 1.55 fm/c. Each other profile is taken after time Δt =1.0 fm/c 
from previous profile. Initial conditions were calculated using optical Glauber model. Equation of state was taken from [5]. Initial energy density ε was set to ε(0,0,0) = 60.0 GeV.

 

 
Possible influence of streams which are left behind penetrating hard partons was firstly proposed in [2]. As shown below streams induced by jets contribute to elliptic flow generation. Spectra and elliptic flow 

coefficient were calculated using a MC event generator THERMINATOR[6]. dE/dx was set to 4.0 GeV/fm at ε = 19.0 GeV/fm3; it scales with T3. 

1. HYDRODYNAMIC MODEL

)()()( brTrTr BAb


−=ρ

2. FLUCTUATIONS 

For description of fluctuations induced by hard partons we have implemented 2D 

Fourier transform of the transverse energy density and expanded it in harmonics and 

powers of k[4]. Each event is characterized by different set of harmonic eccentricity 

coefficients ε
n
. These coefficients change their values during the hydrodynamic 

evolution with evolving jets.

Fluctuations of energy density close to the end of hydrodynamic evolution:  

Left: Fluctuations of  ε
n 

in sample of 100 events, blue crosses: events without jets, 

red crosses: simulation with hard partons

Center: Average values  ε
n 
of in sample of 100 events, blue crosses: events without 

jets, red crosses: simulation with hard partons

Right: time evolution of ε
2 
averaged over sample of 100 events

We show these coeficients for central collisions.
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η  distribution from 300 artificial 
THERMINATOR[6] events.
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Results from ultra-central collisions

Anisotropy coefficients
compare:
dE/dx = 7 GeV/fm
dE/dx = 4 GeV/fm
hot spots
smooth initial conditions
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Results from 30–40% centrality
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Similar approaches

Y. Tachibana, T. Hirano: Phys. Rev. C 90 (2014) 021902
reponse of medium to only one dijet

R.P.G. Andrade, J. Noronha, G. Denicol:
Phys. Rev. C 90 (2014) 024914
one dijet, 2+1D hydrodynamics

S. Floerchinger and K. Zapp: Eur. Phys. J. C 74 (2014) 3189
1+1D hydrodynamics
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Questions to be looked at. . .

How does one distinguish initial state generated anisotropies from
those generated on the way (from jets or dynamical fluctuations)?
Get v2 with different methods. . .
Correlations of various vn’s. . .

How much anisotropy can one produce during evolution in order not
to produce too much entropy?

How the response to jets changes in viscous hydrodynamics?
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Preliminary summary

Momentum deposition from hard partons gives large contribution to
anisotropic flow
⇒ must be included in simulations

The interplay of many induced streams is important

Outlook: simulations with viscous hydrodynamics and fluctuating
initial conditions

M. Schulc, B. Tomášik: Phys. Rev. C 90 (2014) 064910

[arxiv:1409.6116]
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Event shapes

How to do Event Shape Engineering among these shapes. . . ?
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. . . ordered
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Similar events

in similar events the evolution is likely to be similar

analyse samples of similar events!

How to select similar events?
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Event Shape Sorting: the algorithm

We will sort events according to their histograms in azimuthal angle.

1 (Rotate the events appropriately)

2 Sort your events as you wish

3 Divide sorted events into quantiles (we’ll do deciles)

4 Determine average histograms in each quantiles

5 For each event i calculate Bayesian probability P(i |µ) that it belongs
to quantile µ

6 For each event calculate average µ̄ =
∑

µ µP(i |µ)

7 Sort events according to their values of µ̄

8 If order of events changed, return to 3. Otherwise sorting converged.

S. Lehmann, A.D. Jackson, B. Lautrup, arXiv:physics/0512238
S. Lehmann, A. D. Jackson and B. E. Lautrup, Scientometrics 76 (2008) 369

[physics/0701311 [physics.soc-ph]]
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Average histograms for random sorting ’before’

Only fluctuating v2
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Average histograms for random sorting ’after’

Only fluctuating v2
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Boris Tomášik (Univerzita Mateja Bela) Event anisotropies Giardini Naxos, 1.9.2015 25 / 30



Toy Model: q2 sorting

Generated 5000 events
up to v2,
v2 = aM2 + bM + c

M ∈ (300, 3000)

Initial rotation: Ψ2

Sort: q2
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Elliptic flow for q2 sorting

Correlation v2 and µ:
0.959

Obvious linear
dependence

v2 might be a better
measure than q2
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More realistic: all orders of anisotropy

No correlation with any of the conventional measures
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More realistic anisotropy: sorting
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Summary

Event Shape is determined in more complicated way than single
variable can characterize

Try Event Shape Sorting (ESS)

ESS might be useful for Single Event Femtoscopy

Hard parton momentum deposition may give important contribution
to flow anisotropies. This will be important to account for when
extracting transport properties.

R. Kopečná, B. Tomášik: arxiv:1507.XXXXX

M. Schulc, B. Tomášik: Phys. Rev. C 90 (2014) 064910

[arxiv:1409.6116]
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