Strangeness in Heavy-lon Collisions An Updated Review

Christoph Blume Goethe-University of Frankfurt

5th International Symposium on Non-equilibrium Dynamics Phuket, Thailand, November 2016

Outline

Strangeness in heavy-ion physics

Overview on strangeness measurements by different experiments

Global A polarization

First significant measurement Vorticity and magnetic field strength

Hyperon interaction

 $\Lambda\Lambda$ interaction and search for bound states Hypernuclei measurements

Small systems and strangeness enhancement

Strangeness as QGP signal Proton-proton and proton-nucleus collisions Multiplicity dependence

Baryon-meson ratios

Hadronization mechanisms, evidence for recombination?

Overview on Strangeness Measurements Experiments

d = 60 cm40 A GeV/c:

GSI-SIS FOPI, KAOS, HADES

BNL-AGS E802, E810, E866, E895, ...

CERN-SPS (Pb beam) WA97, NA44, NA45, NA50 NA49, NA57, NA61

BNL-RHIC STAR, PHENIX, BRAHMS

CERN-LHC ALICE

New low energy programs CBM@FAIR, NICA

Overview on Strangeness Measurements RHIC and LHC

Overview on Strangeness Measurements Beam Energy Scan at RHIC

Overlap with SPS data

Good agreement with NA49 yields

Most particle species covered for $\sqrt{s_{NN}}$ > 7 GeV

STAR Shusu Shi SQM16

SHM A. Andronic et al., NPA772 (2006) 167

Overview on Strangeness Measurements Beam Energy Scan at the CERN-SPS: NA61 / SHINE

Systematic study of pp

Beam energies 20, 31, 40, 80, 158 GeV

Before: collection of "historic" data as reference

Data on charged kaons and Λ available up to now

Large rapidity coverage

Results from Be+Be

Beam energies 13, 19, 31, 40, 75, 150 AGeV

Charged pions shown so far

Heavier systems

Analysis of Ar+Sc ongoing

Overview on Strangeness Measurements Beam Energy Scan at the CERN-SPS: NA61 / SHINE

Energy dependence of K⁺/π⁺ yields

Reduced statistical and systematic errors in comparison to "historic" data

Important benchmark for models

Overview on Strangeness Measurements

Energy Dependence of Total Yields

Covered CM-energies

AGS: $2.4 \le \sqrt{s_{NN}} \le 4.8 \text{ GeV}$

- SPS: $6.3 \text{ GeV} \le \sqrt{s_{\text{NN}}} \le 17.3 \text{ GeV}$
- RHIC: 7 GeV $\leq \sqrt{s_{NN}} \leq 200$ GeV
- LHC: $\sqrt{s_{NN}} = 2760 \text{ GeV}$

High energies

All particle species measured

Only mid-rapidity data

Low energies

Mostly limited to bulk particles

Almost no rare strange (anti-)particles (Ξ^-, Ω^-) at low energies

4π data available

Overview on Strangeness Measurements SIS-18: HADES Data Compared to Statistical Model

Quite extensive data set!

T and μ_B right now above expectation from freeze-out curve ...

Overview on Strangeness Measurements

SIS-18: HADES Data on ϕ Meson

Φ/K⁻-ratio

Rapid rise towards low energies

Qualitatively predicted by statistical model

Described my (modified) UrQMD

Feeddown into kaons

Can explain the different slope parameters of K^{+} and K^{-}

Important role of ϕ at low energies

Basic Idea

Polarization of quarks

Coupling of system orbital momentum L to spins of (anti-)quarks in QGP (for non-central A+A collisions)

Might survive hadronization as a polarization of hadrons

Λ polarization P_H

Relative to the reaction plane α_{H} = Hyperon decay parameter

 θ^* = Angle between momentum of daughter (anti-)proton in Λ frame relative to \vec{L}

Standard technique for event plane determination $\Psi_{\text{EP}}^{(1)}$ = Event plane angle $R_{\text{EP}}^{(1)}$ = Event plane resolution ϕ_{p}^{\star} = Azimuthal angle relative to EP Globally polarized QGP Z. Liang and X.N. Wang, PRL94 (2005) 102301

$$\frac{dN}{d\cos\theta^*} \propto 1 + \alpha_H P_H \cos\theta^*$$
$$P_H = \frac{8}{\pi\alpha_H} \frac{\langle \sin(\phi_p^* - \Psi_{EP}^{(1)}) \rangle}{R_{EP}^{(1)}}$$

Previous Measurements

No significant signal observed at SPS and RHIC

First attempts, limited statistics at SPS (no systematic errors!)

Access to Vorticity and Magnetic Field Strength

Previous Measurements

Thermal vorticity $\omega \approx 0.02-0.16 \text{ fm}^{-1} \text{ (for } T = 200 \text{ MeV)}$

Experimental challenge

High statistics on low-Q pairs needed

High statistics measurement

Corrected $\Lambda\Lambda$ two-particle c.f. obtained by STAR:

$$C'(Q) = \frac{C_{measured}(Q) - 1}{P(Q)} + 1$$

Corrections: Λ purity (P(Q))

Feed down: $\Sigma^0 \Lambda$, $\Sigma^0 \Sigma^0$, $\Xi^-\Xi^$ interaction not known \Rightarrow effect not subtracted here

Effects in $\Lambda\Lambda$ c.f.

Quantum statistics \Rightarrow anti-correlation

Strong interaction between $\Lambda\Lambda$ pairs $\Rightarrow C(Q = 0) \neq 0.5$

PRL114, 022301 (2015)

Strong Interaction between As

ΛΛ scattering length

Fit with Lednicky-Lyuboshitz model Parameters: S-wave scattering length a_0 Effective radius r_{eff} Emission radius r_0 (Normalization *N* and suppr. par. λ)

Term for residual correlations (a_{res} , r_{res})

Interaction is weak

 $|a_{\wedge\wedge}| < |a_{p\wedge}| < |a_{NN}|$

Sign not yet conclusive

Fit suggests weak repulsive interaction

Morita et al. favor weak attraction (radial expansion included)

Direct Searches for H-Dibaryon

Direct Searches for H-Dibaryon

Extraction of upper limits

A-bound states: $\Lambda\Lambda$ and $\overline{\Lambda n}$

 $\frac{H \to \Lambda \ p \ \pi^-}{\Lambda n \to \overline{d} \ \pi^+}$

Upper limits as function of lifetime and branching ratios

Theory expectations from thermal model (eq. and non-eq.), hybrid UrQMD, and coalescence model (for H-dibaryon)

Hypernuclei Hypertriton Measurement by STAR

First observation of an anti-hypernucleus

Extends chart of nuclei

Bound Λ-nucleon states

Good agreement with thermal model expectation in contrast to $\Lambda\Lambda$ and $\overline{\Lambda n}$

Hypernuclei Hypertriton Measurement by ALICE

Hypernuclei Hypertriton Measurement by ALICE

Yield of hypertriton

Good agreement with equilibrium thermal models and hybrid UrQMD

Ratio hypertriton/³He

Good agreement with thermal model expectations

Small Systems LHC Data (ALICE) on Strangeness Enhancement

Enhancement factor

$$E = \frac{2}{\langle N_{part} \rangle} \left[\left. \frac{dN(Pb+Pb)}{dy} \right|_{y=0} \middle/ \left. \frac{dN(p+p)}{dy} \right|_{y=0} \right]$$

Relative to p+p

Enhancement for Ω factor ≈ 6

Small Systems Energy Dependence of pp Data

Particle Ratios in Proton-Nucleus: Ξ/π and Ω/π

Multiplicity Dependence

p-Pb provides qualitative connection between pp and Pb-Pb also for multistrange particles

Better scaling with multiplicity density?

Reaches level of statistical model (GC) expectation

ALICE PLB758 (2016) 389

Particle Ratios in pp, p-Pb and Pb-Pb Compared

Multiplicity Dependence

pp event classes, measure of reaction violence: $\langle dN_{ch}/d\eta \rangle$

Similar dependence than in p-Pb! Not trivial, since physics in high mult. $pp \neq high mult. p-Pb$

Overlap with peripheral Pb-Pb (K_{s}^{0} , Λ)

Universal scaling

Strangeness enhancement evolves with multiplicity dependence

Particle Ratios in pp and p-Pb Compared

Multiplicity Dependence

pp event classes, measure of reaction violence: $\langle dN_{ch}/d\eta \rangle$

Similar dependence than in p-Pb! Not trivial, since physics in high mult. $pp \neq high mult. p-Pb$

Overlap with peripheral Pb-Pb (K_{s}^{0} , Λ)

Universal scaling

Strangeness enhancement evolves with multiplicity dependence

Strangeness hierarchy

Stronger multiplicity dependence for higher strangeness content

Particle Ratios in pp and p-Pb Compared

Multiplicity Dependence

 $\Lambda/K^0{}_s$ and p/π

Common evolution with $\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta
angle$

Ratios show no strong increase → not mass related, but depends on strangeness content

ALICE arXiv:1606.07424

Particle Ratios in pp, p-Pb and Pb-Pb Compared

Multiplicity Dependence

p-Pb provides qualitative connection between pp and Pb-Pb also for resonances

Stronger suppression at higher multiplicity densities for K* (rescattering)

No suppression for $\boldsymbol{\varphi}$

EPJC76 (2016) 245

Particle Ratios in pp, p-Pb and Pb-Pb Compared

Multiplicity Dependence

p-Pb provides qualitative connection between pp and Pb-Pb also for resonances

Stronger suppression at higher multiplicity densities for K* (rescattering)

No suppression for $\boldsymbol{\varphi}$

Stronger trend seen in pp! Different physics ...

ALICE Anders Knospe, SQM16

Small Systems $\langle p_T \rangle$ in pp, p-Pb and Pb-Pb Compared

No universal scaling for dynamical quantities

 $\langle p_T \rangle_{p-Pb} > \langle p_T \rangle_{Pb-Pb}$ at the same $\langle dN_{ch}/d\eta \rangle$, also true for higher moments

Side Remark: J/ ψ vs Multiplicity in pp

Multiplicity Dependence

Similar strong increase of relative J/ψ yield with multiplicity density

Comparable to p-Pb (not public yet)

Similar for open charm!

Interplay soft+hard physics

 $dN_{ch}/d\eta$: soft scale, described via Multi Parton Interactions (MPI)

 J/ψ production: hard scale, also affected by MPI ?

PLB712 (2012) 165

Side Remark: J/ ψ vs Multiplicity in pp

Multiplicity Dependence

Similar strong increase of relative J/ψ yield with multiplicity density

Comparable to p-Pb (not public yet)

Similar for open charm!

Connection to Pb-Pb?

Maybe also not so bad ...

Add p-Pb data

Julian Book PhD Thesis

Conclusions

Lots of new and precise data in the last few years At high and low energies!

New topics (re-)appear

Global Λ polarization $\Rightarrow 1^{st}$ significant measurement $\Lambda\Lambda$ interaction: information from correlation measurements Hypernuclei measurements

Interesting results from small systems at high energies

Smooth evolution of strangeness enhancement with multiplicity density Same for Pb-Pb, p-Pb and **pp**! However, does not work for all observables

Baryon-Meson comparisons

Sign of recombination or hydrodynamic flow? Indication for change of medium properties around $\sqrt{s_{NN}} \le 14.5$ GeV?

Baryon-Meson Λ/K_{s}^{0} -Ratio vs p_{T} at RHIC

Baryon-Meson $\overline{\Lambda}/K_{s}^{0}$ -Ratio vs p_{T} at RHIC

Energy dependence

Maximum in Λ/K_{s}^{0} -ratio decreases with decreasing energy

Centrality dependence seems to get weaker

Medium properties

Transition around $\sqrt{s_{NN}} \le 14.5$ GeV? Or rather smooth evolution?

 \Rightarrow More statistics needed

STAR Shusu Shi SQM16

Baryon-Meson

 v_2 of Antiparticles at RHIC

Energy dependence

Many different anti-baryons analyzed

Splitting between baryon and meson seen for $\sqrt{s_{\rm NN}}$ > 11.5 GeV

Medium properties

Transition around $\sqrt{s_{NN}} \le 14.5$ GeV? Or rather smooth evolution?

 \Rightarrow More statistics needed

STAR PRC93 (2016) 014907

Baryon-Meson Λ/K_{s}^{0} -Ratio vs p_{T} at LHC

Same baryon dominance

Height of maximum similar to RHIC $(\Lambda/K_s^0)_{max} \approx 1.5$

Position of maximum shifted to slightly higher $p_{\rm T}$

Strong centrality dependence pp: $(\Lambda/K_{s}^{0})_{max} \approx 0.5$

High *p*_T (> 7 GeV/*c*) Ratio the same in pp and A+A (~ 0.3)

Model comparisons

Hydro works up to $p_{\rm T} \approx 2 \text{ GeV}/c$

Recombination model describes shape, but overestimates ratio

Good description by EPOS

PRL111, 222301 (2013)

Baryon-Meson Λ/K_{s}^{0} -Ratio vs p_{T} at LHC

Baryon/meson or mass?

Comparison of Λ/K_s^0 and p/ ϕ

p/ ϕ -ratio is flat as function of p_T (central collisions)

 \Rightarrow Mass difference the driving factor

Strong centrality dependence of p/ϕ Role of rescattering?

Baryon-Meson Ω/φ-Ratio vs p_T at RHIC and LHC

Only strange quarks

Baryon (sss) and meson (ss)

Small hadronic cross section \Rightarrow partonic phase

Ratio Ω/Φ Rising up to $p_T \approx 4 \text{ GeV}/c$

Consistent with quark coalescence model up to $p_T \approx 4 \text{ GeV}/c$ Maximum at different position

 $p_{\rm T}$ dependence not described by any model

 $\Omega/\phi(LHC) > \Omega/\phi(RHIC, 200 \text{ GeV})$ for $p_T > 3 \text{ GeV/c}$

Also deviation at $\sqrt{s_{NN}}$ = 11.5 GeV

Hypernuclei Lifetime of Hypertriton

New world average $\tau = 215^{+18}_{-16}$ ps

Good agreement with STAR and ALICE measurement

Slightly below expectation for free Λ

ALI-PREL-73917

Implications for Bound States (H-Dibaryon)

ΛΛ bound state

Disfavored, since it would imply a depletion below 0.5 of c.f. at Q = 0

Resonance above $\Lambda\Lambda$ thres.

Very small signal expected

More statistics needed

K. Morita et al. PRC91, 024916 (2015)

Overview on Strangeness Measurements SIS-18: HADES Data

Overview on Strangeness Measurements Yields at Lower Energies (NA49 + AGS)

Available data

Central events: π , K, p, Λ (statistics ok) and Λ^* , K*, Ξ , Ω , ϕ (low statistics)

System size: π , K, p, (Λ), not at all energies

Overview on Strangeness Measurements

Yields at Lower Energies (NA49): System Size Dependence

Overview on Strangeness Measurements Yields at Lower Energies (NA49, NA57, STAR)

Energy Dependence

Gap between SPS and RHIC is being closed

Overlap with SPS \rightarrow cross checks

From top SPS energy up to LHC all particle species, including rare Ξ and Ω , are covered

STAR PRC83, 024901 (2011)

Overview on Strangeness Measurements Beam Energy Scan (BES) at RHIC: STAR

X. Zhang, SQM 2015

Overview on Strangeness Measurements LHC

Overview on Strangeness Measurements Beam Energy Scan (BES) at RHIC: STAR

Antibaryon-baryon ratios

Mid-rapidity yields

Continuous evolution from SPS to RHIC

Ratios converge towards unity at high energies

 $R(\bar{\Omega}^+/\Omega^-) > R(\bar{\Xi}^+/\Xi^-) > R(\bar{\Lambda}/\Lambda)$

Overlap with SPS data

Good agreement with NA49 ratios

Strangeness Enhancement

Cascades at Low Energies

Sub-Threshold

Threshold in N+N: $E_{thr} = 3.74 \text{ GeV}$

Surprisingly high Ξ^- yield

Statistical model comparison

Data much above model expectation

Similar for transport models

New mechanisms?

Small Systems Energy Dependence of pp Data

Strange / non-strange ratio: K^+/π^+

Continuous increase with \sqrt{s} in pp (not in A+A, though)

Ratio converges to approx. same value at high energies

Statistical Model Comparison in pp

Statistical model analysis of pp

Existing for lower energies and older Tevatron data at higher energies

Based on canonical ensemble

Predictions for pp Grand-canonical ensemble

Table 2. Predictions of the midrapidity density of hadrons relative to that of all charged hadrons at $\sqrt{s} = 10$ TeV in the grand-canonical limit. The temperature value is assumed as T = 170 MeV, and the numbers *do not* include weak decay products.

Particle	$(dn/dy)/(dn/dy_{ch})$ $\gamma_S = 0.6$	$(dn/dy)/(dn/dy_{ch})$ $\gamma_S = 1$	
$\Lambda = \bar{\Lambda}$	0.0112	0.0162	
$\begin{split} \Xi^+ &= \Xi^- \\ \Omega^+ &= \Omega^- \end{split}$	0.001 05 0.000 121	0.002 54 0.000 488	F. Becattini et al., JPG38, 025002 (2011

Measurement (pp, \sqrt{s} = 7 TeV): Ξ⁻/(dN_{ch}/dη): 0.00131 Ω⁻/(dN_{ch}/dη): 0.000112 ALICE PLB728, 216 (2014)

Wroblewski-factor: $\lambda_s = \frac{2 \langle s\bar{s} \rangle}{\langle u\bar{u} \rangle + \langle d\bar{d} \rangle}$

Statistical Model Comparison in pp

Statistical model fit

Grand canonical ensemble

 χ^2 /NDF not too impressive

Lower temperature than in extrapolation by Becattini et al.

M. Floris, QM2014

Particle Ratios: K/ π and Λ/K_{s}^{0} in Proton-Nucleus Collisions

Multiplicity Dependence

Similar increase of strange/non-strange ratios in p-Pb and Pb-Pb

Connection between pp and AA?

How about multistrange particles?

Statistical Model for p-Pb

Statistical model fits

Grand-canonical (GC) and strangeness-canonical (SC)

Most central p-Pb collisions

- χ^2/NDF not too impressive
- $\gamma_{\rm s}$ compatible with unity.

 $R_{\rm c} \approx R_{\rm V} \Rightarrow$ no canonical strangeness suppression

M. Floris, QM2014

Baryon-Meson Ratios Λ/K_{s}^{0} -Ratio vs p_{T} at LHC: p-Pb vs Pb-Pb

No enhancement above unity in p-Pb

But higher than in pp, with maximum at similar position than Pb-Pb

Multiplicity dependence in p-Pb seen

Baryon-Meson Ratios Ω/ ϕ -Ratio vs p_{T} at RHIC

NCQ-scaled Ω/ϕ -ratio

Might reflect strange quark distribution $f_s(p^s_T)$ at hadronization $\frac{N(\Omega^- + \bar{\Omega}^+)|_{p_T^\Omega = 3p_T^s}}{N(\phi)|_{p_T^\phi = 2p_T^s}}$

J.H. Chen et al., PRC78, 034907 (2008)

Fit to ratios with Boltzmann

$$g_s A \frac{m_T}{T (m_s + T)} e^{-(m_T - m_s)/T}$$

 $(m_s = 0.46 \text{ GeV}/c^2, g_s \text{ takes } \sqrt{s_{NN}}\text{-dependent yield}$ ratio \overline{s}/s into account)

Similar fit results for $\sqrt{s_{NN}} \ge 19.6 \text{ GeV}$ deviations below (note: centrality selection different at 7.7 GeV)

Transition from partonic to hadronic matter below $\sqrt{s_{NN}}$ = 19.6 GeV ?

ALI-DER-80680

