

Strangeness production at sub-threshold energies

Strangeness production in HICs in the SIS energy regime

Yvonne Leifels (GSI)

Outline

- Introduction
- K⁺ and K⁰, K⁻
 - yields and spectra
 - Φ production
 - flow
- Hyperons
 - bound states with strangeness
- Summary and Conclusion

Thanks to:

FOPI collaboration in particular W. Reisdorf

- J. Aichelin, E. Bratkovskaya,
- C. Hartnack, A. LeFevre
- and to KaoS and HADES and...

Introduction

Strangeness production in heavyion collisions at energies below or close to the threshold in NN system

- Fermi momenta may contribute energy
- multistep processes can cumulate the energy needed
- intermediate resonances used as an energy reservoir
- production at high densities due to short life time of resonances

Introduction

Production of strange particles in heavy-ion collisions at energies close to threshold energies:

- Access to bulk properties to nuclear matter
- Production processes
- Reaction dynamics
- Interaction of particles in dense matter
- In-medium properties
- Exotic states
 - hyper-nuclei
 - K-, η' bound states

Experiments at SIS18-GSI

Experiments at GSI

Bulk properties of nuclear matter Equation of state

- models
- details of the input
 - cross sections
- in medium potentials etc Testing densities at 2-3 ρ_0

Data: C. Sturm et al., PRL 86 (2001) 39 IQMD: C. Hartnack et al., PRL96:012302,2006 RQMD: C. Fuchs et al., PRL 86 (2001) 1974

GSI

Bulk properties of nuclear matter Flow of nucleons

 $\frac{\mathrm{dN}}{\mathrm{d\phi}} \sim 1 + 2v_1 \cos(\phi) + 2v_2 \cos(2\phi), \dots \phi = \phi_{\mathsf{R}} - \phi$

- reaction dynamics described
- pion production reproduced~10%
- proton yield overestimated
 - yields depending on EOS (cluster production)
- consistent description of flow and strangeness production possible

GSľ

In medium properties of pseudo-scalar mesons

Modified properties of hadrons in dense baryonic matter?

$$rac{\langle \overline{q} q
angle^*}{\langle \overline{q} q
angle} \sim rac{M^*}{M}$$

Braun – Rho – Scaling (PRL 66,1991): Masses of non-strange hadrons scale with quark condensate

 K^-N – interaction attractive close to ground state densities (\rightarrow SIDDHARTA), but strength (depth of potential) unclear at high densities -> spectral function

In medium-properties

J. Schaffner-Bieliich et al.Nucl. Phys. A 625 (1997)

In medium-properties

G.E Brown et al. Nucl. Phys. A 567 (1994) 937 T. Waas, N. Kaiser, W. Weise, Phys. Lett. B 379 (1996) 34

J. Schaffner-Bieliich et al.Nucl. Phys. A 625 (1997)

In medium KN-Potential in pion induced reactions

In-medium KN Potential in heavy ion collisions

In-medium KN-potential from low momenta

In-medium potential What is influencing the shape of the K⁺ spectra?

- rescattering tends to align the Kaons to the nucleons → T higher
- potential causes repulsion \rightarrow T lower

In-medium KN potential K⁰ in Ni+Ni at 1.9A GeV

In-medium KN potential Heavy ion collisions C+C to Au+Au

 \rightarrow repulsive KN potentia U_{pot} (ρ_0) = +20...40 MeV

In-medium potentials K⁻ spectra

- only 20% of all K⁻ survive
- absorption at low momenta \rightarrow T higher
- re-scattering tends to align the Anti-kaons to the nucleons \rightarrow T higher
- potential causes attraction → T lower
- contribution of the Φ decay \rightarrow T lower

In medium potentials Φ production

 \rightarrow talk of Markus Bleicher

In-medium potential Φ production

FOPI: AI+AI/Ni+Ni 1.9A GeV

- Φ production as function of number of participating nucleons rising with centrality
- Φ/K⁻ independent of centrality
 - linked?
- Φ/π ratio rises with centrality?
- Φ in Al+Al 1.9AGeV
 - contribution to K⁻ production 17±3±2 %
 - T_{eff} = 93 ± 14 (stat)₋₁₇⁺¹⁵(syst) MeV

In medium potentials K⁻ Spectra and the contribution of Φ decay

In-medium potential K⁻ spectra

Au+Au 1.5A GeV

Apparent slopes of K^{-} systematically steeper than K^{+} Because of:

- Attractive KN potential
- Contribution of Φ decay?
 - shown in M.
 Bleichers talk

In-medium potential K⁻ spectra

Apparent slopes of $K^{\overline{}}$ systematically steeper than K^{+} Because of:

- Attractive KN potential
- Contribution of Φ decay?

In-medium potential Side flow v₁

- Very strong kaon antiflow signal,
- as big as proton flow (opposite sign!)
- Comparisons to microscopic transport models
 → repulsive KN potential
- As subject to an attractive potential

In medium KN potential Flow in Ni+Ni collisions

V. Zinyuk et al. PRC (2014)

K⁺ v₁ better described with potential $U_{KN}(\rho_0)$ = +20 MeV)

- K⁺ v₂ no large sensitivity
- Data for K⁻ better described with potential

Systematic studies on flow – Ni+Ni

- Side flow best described with repulsive KN potential U_{pot} <~20 MeV
- consistent with older FOPI data on kaon flow
- more flow data on heavier systems needed
- FOPI measured Ru+Ru and Ni+Pb
- HADES measured Au+Au 1.25A GeV
- Kaos measured Au+Au/Ni+Ni at midrapidity

Systematic studies on flow – Ru+Ru

In-medium K⁻N potentials Elliptic flow in Ni+Ni 1.9AGeV

Summary

- Strangeness production close to threshold
 - high intensity beams and high quality data and rare probes
 - sensitive probe
 - bulk properties and reaction dynamics
 - in medium potentials
 - production, re-scattering, absorption must be under control
 - repulsive K⁺N potential (U(ρ₀)= 20 40 MeV)
 - data are consistent with a "shallow" attractive K-N potential (U(ρ_0) ~ -50 MeV)
 - K+ : low momentum part of spectra, slopes
 - K+ : v₁ and v₂ at low energies
 - K- : slopes or K-/K+ ratios at higher beam energies
 - K-: v₁ (and v₂)
 - microscopic transport models crucial
- more data is needed HADES, CBM@FAIR, BM@N
 - flow data in heavier systems, double strangeness, exotics (hyper nuclei)
 - elementary productions cross sections

After discussing in-medium potentials, rescattering and other effects.....

After discussing in-medium potentials, rescattering and other effects.....

And in Al+Al....

FOPI data for AI+AI at 1.91 AGeV Statistical model analysis with THERMUS code (K. Piasecki)

- Particle yields are described by Thermal models with reasonable parameters consistent over the complete energy range upto LHC. But at SIS energies:
 - AI+AI collisions are most probably not equilibrated
 - Phase space distributions are generally elongated beyond 400AMeV even in Au+Au
 - Systems are not completely mixed
 - No equilibration within microscopic models
 - Microscopic models are able to account for particles ratios for which production cross sections are *known*

The FOPI collaboration

THU Beijing – NIPNE Bucharest – KFKI RMKI Budapest – LPC Clermont-Ferrand – GSI Darmstadt – Helmholtzzentrum Rossendorf – Universität Heidelberg – IMP Lanzhou – ITEP Moscow – KI Moscow – TU München – Korea University Seoul – University of Split - IPHC Strasbourg – SMI Vienna – University of Warsaw – RBI Zagreb

Thank you for your attention

NED 2016 - Yvonne Leifels

Heavy ion collisions between 0.4 – 1.5A GeV

Description of "bulk" properties by the models

- reaction dynamics described
- pion production reproduced~10%
- Proton yield overestimated
 - yields depending on EOS (cluster production)
- flows described by SM
- HSD and IQMD describe experimental equally well (if clusters are omitted)

In medium properties of pseudo-scalar mesons

Modified properties of hadrons in dense baryonic matter?

$$\frac{\langle \bar{q}q \rangle^*}{\langle \bar{q}q \rangle} \sim \frac{M^*}{M}$$

Braun – Rho – Scaling (PRL 66,1991): Masses of non-strange hadrons scale with quark condensate

1000 NJL η 800 η 600 400 π 200 Nagahiro et al, PRC 74, 045203 (2006) 0 2 0 ρ/ρ

meson mass [MeV]

Y. Leifels - NED 2016

Partial restoration of dynamical

breaking of χ symmetry

Search for η ' bound states

 no distinct structures observed (accepted in PRL)

Advancing HSD

K/KN in hot/dense matter: self-consistent and unitary coupled-channel approach

Inside IQMD

After the convolution of the Skyrme type potentials supplemented by momentum dependent interactions (mdi) for infinite saturated nuclear matter at equilibrium

U = c	$\alpha \cdot \left(\frac{\rho_{int}}{\rho_0}\right)$	$+ \beta \cdot \left(\frac{\rho_{in}}{\rho_0}\right)$	$\left(\frac{t}{2}\right)^{\gamma}$	$\vdash \delta \cdot \ln^2 \left(\varepsilon \right)$	$\cdot \left(\Delta \vec{p}\right)^2 + 1$	$\left(\frac{\rho_{int}}{\rho_0}\right)$
	α (MeV)	β (MeV)	γ	δ (MeV)	$\varepsilon \left(\frac{c^2}{\text{GeV}^2}\right)$	$\kappa~({\rm MeV})$
S	-356	303	1.17			200
\mathbf{SM}	-390	320	1.14	1.57	500	200
Η	-124	71	2.00			376
HM	-130	59	2.09	1.57	500	376
INT	-157	103	1.58			284
VH	-110	56	2.40			456

Are there other solutions?

describes most of the data

Systematic studies on flow – Ru+Ru

In-medium potential K⁻ spectra

Apparent slopes of K⁻ systematically steeper than K⁺ Because of:

- Absorption
- Attractive KN potential
- Later production
 - BY \rightarrow NNK⁻
 - $\pi B \rightarrow NK^{-}$
- Contribution of Φ decay?
 - smaller at higher energies

AI+AI 1.9AGeV Substracting contribution of Φ

In-medium KN potential Au+Au 1.25A GeV

In-medium potential in heavy ion collisions

M. Merschmeyer et al., Phys. Rev. C 76 (2007) 024906

In-medium properties of pseudo-scalar mesons

- presence of resonances
 - chiral SU(3) effective field theory with coupled channels
 - coupled channel G-Matrix approach
- K⁻N interaction attractive at finite (ground state) densities, but strength (depth of potential) unclear at high densities

In-medium properties of Anti-Kaons

- presence of resonances
 - chiral SU(3) effective field theory with coupled channels
 - coupled channel G-Matrix approach
- $K^{-}N$ interaction attractive at finite (ground state) densities, but strength (depth of potential) unclear at high densities

