

Open heavy flavour in heavy-ion collisions at the CERN-LHC

André Mischke Utrecht University

Dr. Anna von der Heydt: Past climate variability = non-equilibrium (thermo-) dynamics

NETHERLANDS EARTH SYSTEM SCIENCE CENTRE

Outline

- Open heavy flavour (charm and beauty) allows study of the dynamical properties of hot QCD matter and degree of thermalisation
- Probes
 - D and B (new!) mesons and heavy-flavour decay leptons (e and $\mu)$
- Collision systems (at LHC facility)
 - pp: test QCD and important baseline for heavy-ion measurements
 - A-A: study hot QCD matter (final state); determine medium properties
 - p-A: study cold nuclear matter effects (initial state)
- Observables
 - R_{AA} and v_2 (versus p_T and centrality)
 - Multiplicity dependence of the yield
 - Angular azimuthal correlations and jets
- Summary and outlook

Probing hot and dense QCD matter

- "Simplest way" to establish the properties of a system
 - calibrated probe
 - calibrated interaction
 - suppression pattern tells about density profile
- Heavy-ion collision

formation time $\tau \sim 1/2m_{\rm Q}$

- hard processes serve as calibrated probe (pQCD)
- partons traverse through the medium and interact strongly
- suppression pattern provides density measurement

General picture

- parton energy loss through mediuminduced gluon radiation
- collisions with medium constituents

Heavy quarks are ideal probes

- Symmetry breaking
 - Higgs mass: electro-weak symmetry breaking → current quark mass
 - QCD mass: chiral symmetry breaking \rightarrow constituent quark mass
- Charm and beauty quark masses are not affected by QCD vacuum
 → ideal probes to study QGP
- Test QCD at transition from perturbative to non-perturbative regime: Charm and beauty quarks provide hard scale for QCD calculations

Radiative parton energy loss

Quantification of medium effects

Comparison of the production yield in heavy-ion collisions with the one in proton-proton

Nuclear modification factor

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle N_{bin} \rangle_{AA} \text{Yield}_{pp}(p_T)}$$

Expectation:

 R_{AA} = 1 for photons R_{AA} < 1 for hadrons

 $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

adrons

14

10

12

16

6 18 p_ (GeV

pp system: QCD vacuum

D-meson production x-section in 7 TeV pp

ALICE

HCh

D*± production in jets in 7 TeV pp

- MC calculations fail to describe data at small z; strongest at low jet transverse momentum
- Indication that jet fragmentation into D*± mesons not well modeled in current MC generators

Open charm production x-section in 13 TeV pp

Total charm production cross section in pp

ALICE, JHEP in press (1605.07569) NLO, M.L. Mangano et al., NPB 373 (1992) 295

- Very good agreement between LHC experiments
- Consistency with NLO pQCD calculations within uncertainties, although systematically at the upper limit
- 8 and 13 TeV data will provide further constraints
- Note: Parton spectra from pQCD input for energy loss models; baseline for measurements in Pb-Pb

Differential B production cross section in 7 TeV pp

B-Bbar $\Delta \phi$ correlations in 7 TeV pp

- Gluon splitting (GS) contribution not well modeled by most of the calculations
- → GS contribution underestimated by PYTHIA (shown here)

A-A system: QGP formation (hot and dense QCD medium)

Typical event displays

Pb-Pb, √s_{NN} = 2.76 TeV

Prompt D-meson R_{AA} in 2.76 TeV Pb-Pb

- Above 5 GeV/c strong suppression (factor 4-5) of D-meson yield in central Pb-Pb, compared to binary scaling from pp
- First $D_{s}^{+}(c\bar{s})$ measurement in heavy-ion collisions
- Expectation: enhancement of strange D-meson yield at intermediate $p_{\rm T}$ if charm hadronises via recombination in the medium

R_{AA}: light versus heavy-quark hadrons

- D⁰ suppression is measured up to 100 GeV/c (CMS)
- Indication for $R_{AA}^{D} > R_{AA}^{pions}$ at low p_T for 10% most central collisions
- Well described by theo. calculations that include both collisional and radiative energy loss (& shadowing)

Prompt D and B-meson R_{AA} in 2.76 TeV Pb-Pb

- Comparison of prompt D mesons (ALICE) with J/ψ from beauty decays (CMS)
- D and B meson $< p_T > \sim 10 \text{ GeV/c}$
- Described by theoretical model calculations including quark-mass dependent energy loss $(R_{AA}^{D} < R_{AA}^{B})$ in the studied p_{T} range

B-meson R_{AA} in 5.02 TeV Pb-Pb

R_{AA} of b-tagged jets in 2.76 TeV Pb-Pb

- Towards constrain of quark-medium coupling parameter g^{med}
- Same suppression for b-tagged jets and inclusive jets at high p_T → mass difference negligible
 - \rightarrow B mesons are sensitive to lower p_{T} b-quarks than b-jets

Note: sizable fraction of b-tagged jets arise from gluon splitting

D-meson v_n in 5.02 TeV Pb-Pb

Key question: Does charm flow / thermalise in the medium?

- $v_2(D^0) < v_2(h^{\pm})$ at low $p_T (< 5 \text{ GeV}/c)$
- v₂ and v₃ are well described by models that include both charm diffusion and charm recombination in the medium → means charm participates in the collective motion of the system

p-A system: Cold nuclear matter effects

Cold nuclear matter (CNM) effects

- CNM effects (from initial state) such as
 - Nuclear modification of PDFs → shadowing at low Bjørken-x (dominant at LHC)
 - Gluon **saturation** from evolution equations (DGLAP and BFKL)
 - $k_{\rm T}$ broadening and Cronin enhancement from multiple parton scatterings
 - Initial-state energy loss
- Final-state effects
 - Energy loss?

- Interactions between final-state particles (collective expansion?)
- Crucial for test of pQCD calculations and interpretation of heavy-ion results

Prompt D-meson R_{pPb} at 5.02 TeV

- D-meson R_{pA} shows consistency with unity
- High-p_T suppression of production yield in Pb-Pb is a final state effect

→ Due to interactions of charm quarks with the QCD medium

Open charm R_{pPb} vs. models

• R_{pA} (measured down to $p_T = 0$) compatible with unity; no centrality dependence (not shown)

- Consistent with predictions from shadowing and CGC model

• Data disfavour suppression larger than 15% at high $p_{\rm T}$

Prompt D⁰ mesons at for/backward rapidity

- Charm production described by pQCD calculations including nPDF
- Large asymmetry in forward-backward production is observed, suggesting non negligible CNM effect
- Indication that data is slightly more suppressed at high-y*

Open beauty R_{pPb}

- R_{pPb} of beauty-decay electrons at low p_T and B mesons in 10 < p_T < 60 GeV/c consistent with unity; same for B⁰ and B_s⁰ R_{p-Pb} (not shown)
- No indication of significant cold nuclear matter effects on beauty production

Heavy-flavour jets

- Charm-jet p_T differential cross section consistent with PYTHIA
- Inclusive beauty jet R_{p-Pb} in agreement with pp reference
- No significant CNM effects on heavy-flavour production at high $p_{\rm T}$

D-tagged charged particle azimuthal correlations

- First D-meson charged hadron correlation measurement at the LHC
- Near-side correlation peak is sensitive to characteristics of jet containing D meson
- Similar yields for p-Pb and pp (not shown)
- Data well reproduced by PYTHIA (in all kinematic ranges)

Summary

- Lots of pp data on heavy-flavour hadron production to test QCD and address open questions (e.g. double parton scattering)
- Heavy quarks are particularly good probes to study transport properties (e.g. drag and diffusion coefficient) in Pb-Pb
 - R_{AA} and v_2 of prompt D mesons and single leptons
 - strong suppression of the yield at high p_T (6-10 GeV/c) observed in central collisions → more insight on energy loss mechanisms
 - non-zero elliptic flow \rightarrow suggest strong re-interactions within the medium
 - Quark-mass dependence: $R_{AA}(\pi) \sim R_{AA}(D, single leptons) < R_{AA}(B, B \rightarrow J/\psi)$
 - Precision measurements in extended p_T ranges needed to further constraint theoretical model calculations (note limitations!)
- Open heavy-flavour results from p-Pb
 - No indication for substantial modification due to cold nuclear matter effects (except for quarkonia, not discussed)
- · Many more exciting results ahead of us
 - Pb-Pb data from Run-2 at $\sqrt{s_{NN}}$ = 5.02 TeV and after upgrades in 2019/20
 - p-Pb data taking at $\sqrt{s_{NN}}$ = 5.02 and 8 TeV in 2016

Lorentz workshop: future directions of the field

Goals

- Develop common understanding of implications and identify open questions left by experiment and theory
- Develop strategies (for the upcoming ~5 years)

Dedicated discussion groups

Future directions

- Further development of the understanding of pp reference
 - Disentangle contribution from different production mechanisms (higher order processes) *E. Norrbin ar*

E. Norrbin and T. Sjostrand, Eur. Phys. J. C17, 137 (2000)

- Experimental separation of radiative E_{loss} and collisional E_{loss} (using e.g. two heavy-flavour particle correlations and di-jets)
- Fully explore beauty probe: differential R_{AA}, v₂ and b-tagged correlations and jets
- Study heavy-flavour baryons (e,g. $\Lambda_{c}{}^{+}$ and $\Lambda_{b}{}^{0})$ to address hadronisation mechanisms