1. (25 points) A tiny ball with positive charge, \(q_1 \), is fixed at the bottom of a frictionless inclined plane. A second small ball, with mass \(m \) and positive charge, \(q_2 \), is placed on the inclined plane at the position shown. If \(m \), \(q_1 \), \(q_2 \), and \(\theta \) are known, what must \(H \) be if the second ball is to remain at rest?
2. (25 points) A charge Q_1 is uniformly spread along the x axis from $x = a$ to $x = b$. A charge Q_2 is placed at the origin. Find the y component of the electric field at the point $x = 0, y = H$.
3. (25 points) An electric field is measured in some region and found to be given by

$$\vec{E} = \alpha x^2 \vec{i}_x + \beta y^2 \vec{i}_y.$$

Here α and β are known constants. For this field find the difference in the electric potential between the point $x = 0, y = c$ and the point $x = c, y = 0$. Verify that this field is conservative by evaluating the derivatives of the electric potential function.
4. (25 points)
a. A cube of sides a is located at the origin. An electric field is present given by
\[\vec{E} = bx^2 \hat{i}_x + cx \hat{i}_z, \]
Find the electric flux through the shaded side marked on the figure.

Find the electric flux through the top (dotted) of the cube.

\[
d\Phi = \vec{E} \cdot d\vec{S}
d\vec{S}_{\text{top}} = \alpha \, d\alpha \alpha \hat{v}_x
\]
\[
d\Phi_{\text{top}} = cx \cdot \alpha \, d\alpha
\]
\[
\Phi_{\text{top}} = \int_0^\alpha cx \, \alpha \, d\alpha = c \alpha \frac{\alpha^2}{2} \left|_0^\alpha \right. = \frac{c \alpha^3}{2}
\]

b. A point charge is located at the center of a sphere of radius R. A cone of solid angle Ω_0 is drawn starting at the charge. What is the electric flux through the area of the sphere which is intersected by the cone?

\[
E = \frac{1}{4\pi \varepsilon_0} \frac{q}{R^2} \quad \Rightarrow \quad S = R^2 \Omega_0
\]
\[
\Phi = \vec{E} \cdot \vec{S} = ES = \frac{1}{4\pi \varepsilon_0} \frac{q}{R^2} R^2 \Omega_0 = \Omega_0
\]
\[
\Phi = \frac{1}{4\pi \varepsilon_0} \frac{q}{R} \Omega_0
\]