Fluid Flow

Flow of a fluid with particle density, n and velocity field \vec{v} through a volume, V.
In time interval dt all particles inside the volume element $dV = \vec{v}(\vec{r}) \, dS \, dt$ flow through surface.

- number of those particles: $dN = n(\vec{r}) \, dV$
- total number of particles per time, flowing out of V:

$$\frac{dN}{dt} = \text{flux} = \int_{\partial V} dS \, n(\vec{r}) \vec{v}(\vec{r}), \quad \partial V: \text{boundary of } V$$

Gauss’s Law (Proof for point particle outside V I)

- split ∂V in rectangular surface elements
- draw cone through surface elements dS_1 and dS_2

Gauss’s Law (Proof for point particle outside V II)

- Surface element from ∂V (blue) with its cone (black) compared to intersection of cone with sphere (red)

$$|d\vec{S}_2'| = \vec{i}_r d\vec{S}_2' = |d\vec{S}_2| \cos \theta = \vec{i}_r d\vec{S}_2$$