1. (25 points) In the circuit below the voltage of the battery, the capacitance, and the values of the resistances are known. The circuit was put together a long time ago so that the steady state can be assumed. Find all currents and the charges on the capacitor plates.

[Diagram of a circuit with resistors and capacitors labeled R₁, R₃, V₁, and V₂]
2. (25 points) An infinitely long, hollow cylindrical wire carries a current i. The wire has outer radius b and the cylindrical hole at its center has radius a.

```
\[i\] \[i\] \[i\]
```

a. Find the force on a charged particle, q, if it had a velocity of magnitude v_0 and was moving along the axis of the cylinder.

```
\[i\] \[i\] \[i\]
```

b. Find the force on a charged particle, q, if it was moving outside of the cylinder, with a velocity that had a component v_1 parallel to the cylinder and a component v_2 perpendicular to the axis of the cylinder.
3. (25 points) A very thin circular loop of wire has a flat section as shown. A current \(i \) flows around the loop. Find the magnetic field at the point \(P \), the center of the circular part.
4. (25 points) The two plates of a capacitor are a distance \(W \) apart and have area \(A \). They are connected by a rectangular loop of wire with no resistance. The dimensions of the rectangle are \(H \) by \(D \). The left corner of the rectangle is at the origin, as shown. There is a \(\vec{B} \) field pointed into the page, perpendicular to the loop. It has a magnitude that is a function of \(x \), but is constant in \(y \). It is given by

\[
B(x) = \alpha + \beta x
\]

where \(\alpha \) and \(\beta \) are not functions of \(x \) or \(y \).

a. Find the flux of this magnetic field through the rectangular loop.

b. Find the equation for the charges on the plates as a functions of time if the self inductance of the loop is \(L \) and if \(\alpha = c_1 t \) and \(\beta = c_2 \) where \(c_1 \) and \(c_2 \) are independent of time.

c. Solve the equation for the charges on the plates as a functions of time if \(L \) is ignored.