

Exploring the QGP at finite baryon chemical potential in and out of equilibrium

Elena Bratkovskaya

(GSI Darmstadt & Uni. Frankfurt)

G S I

Theoretical Physics Colloquium (on-line), hosted by Prof. Igor Shovkovy at the Arizona State University. 20 January, 2021

1

Experiment: Heavy-ion collisions

Heavy-ion collision experiments

→ ,re-creation' of the Big Bang conditions in laboratory: matter at high pressure and temperature

Heavy-ion accelerators:

Large Hadron Collider -LHC (CERN): Pb+Pb up to 574 A TeV Relativistic-Heavy-Ion-Collider -RHIC (Brookhaven): Au+Au up to 21.3 A TeV Facility for Antiproton and Ion Research – FAIR (Darmstadt) (Under construction) Au+Au up to 10 (30) A GeV

Nuclotron-based Ion Collider fAcility – NICA (Dubna) (Under construction) Au+Au up to 60 A GeV

The ,holy grail' of heavy-ion physics:

The phase diagram of QCD \rightarrow thermal properties of QCD in the (T, μ_B) plain

Signals of the phase transition:

- Multi-strange particle enhancement in A+A
- Charm suppression
- Collective flow (v₁, v₂)
- Thermal dileptons
- Jet quenching and angular correlations
- High p_T suppression of hadrons
- Nonstatistical event-by-event fluctuations and correlations

Experiment: measures final hadrons and leptons

How to learn about physics from data?

Compare with theory!

thermal model thermal+expansion ______ final hydro ______ final

Statistical models:

basic assumption: system is described by a (grand) canonical ensemble of non-interacting fermions and bosons in thermal and chemical equilibrium = thermal hadron gas at freeze-out with common T and μ_B

[-: no dynamical information]

• <u>Hydrodynamical models:</u>

basic assumption: conservation laws + equation of state (EoS); assumption of local thermal and chemical equilibrium

- Interactions are ,hidden' in properties of the fluid described by transport coefficients (shear and bulk viscosity η , ζ , ..), which is 'input' for the hydro models

[-: simplified dynamics]

• Microscopic transport models:

based on transport theory of relativistic quantum many-body systems

- Explicitly account for the interactions of all degrees of freedom (hadrons and partons) in terms of cross sections and potentials
- Provide a unique dynamical description of strongly interaction matter in- and out-off equilibrium:
- In-equilibrium: transport coefficients are calculated in a box controled by IQCD
- Nonequilibrium dynamics controled by HIC

Actual solutions: Monte Carlo simulations

Goal: microscopic transport description of the partonic and hadronic phases of heavy-ion collisions

Problems:

- □ What are the properties of the QGP degrees of freedom?
- □ How to solve the hadronization problem?
- □ What is an appropriate transport theory ?

Information from lattice QCD at $\mu_B=0$

□ Scalar quark condensate $\langle \overline{q}q \rangle$ is viewed as an order parameter for the restoration of chiral symmetry: $\langle \overline{q}q \rangle = \begin{cases} \neq 0 & \text{chiral non-symmetric phase;} \\ = 0 & \text{chiral symmetric phase.} \end{cases}$

 \rightarrow both transitions occur at about the same temperature T_c for low chemical potentials

Thermodynamics of QCD at finite T and μ_B

Theory: \rightarrow thermal properties of QCD in the (T, μ_B) plain \rightarrow lattice QCD – limited to low $\mu_B < 400$ MeV - 'sign problem' of IQCD at finite μ_B

Taylor expansion allows for IQCD calculations for $\mu_q/T \ll 1$ ($\mu_B=3\mu_q$)

Possible phase diagram of QCD

Degrees-of-freedom of the QGP

For the microscopic transport description of the system one needs to know all degrees of freedom as well as their properties and interactions!

IQCD gives QGP EoS at finite (T,μ_B)

! needs to be interpreted in terms of degrees-of-freedom

pQCD:

- weakly interacting system
- massless quarks and gluons

- **Thermal QCD** = QCD at high parton densities:
- strongly interacting system
- massive quarks and gluons
- ➔ quasiparticles
- = effective degrees-of-freedom

DQPM – effective model for the description of non-perturbative (strongly interacting) QCD based on IQCD EoS

Degrees-of-freedom: strongly interacting dynamical quasiparticles - quarks and gluons

Theoretical basis :

□ ,resummed' single-particle Green's functions → quark (gluon) propagator (2PI) :

gluon propagator: $\Delta^{-1} = P^2 - \Pi$ & quark propagator $S_q^{-1} = P^2 - \Sigma_q$ gluon self-energy: $\Pi = M_g^2 - i2\gamma_g \omega$ & quark self-energy: $\Sigma_q = M_q^2 - i2\gamma_q \omega$

Properties of the quasiparticles are specified by scalar complex self-energies:

 $Re\Sigma_q$: thermal masses (M_g, M_q); $Im\Sigma_q$: interaction widths (γ_g, γ_q)

→ spectral functions $\rho_q = -2ImS_q \rightarrow$ Lorentzian form:

$$o_j(\omega, \mathbf{p}) = \frac{\gamma_j}{\tilde{E}_j} \left(\frac{1}{(\omega - \tilde{E}_j)^2 + \gamma_j^2} - \frac{1}{(\omega + \tilde{E}_j)^2 + \gamma_j^2} \right)$$
$$\equiv \frac{4\omega\gamma_j}{\left(\omega^2 - \mathbf{p}^2 - M_j^2\right)^2 + 4\gamma_j^2\omega^2} \qquad \tilde{E}_j^2(\mathbf{p}) = \mathbf{p}^2 + M_j^2 - \gamma_j^2$$

A. Peshier, W. Cassing, PRL 94 (2005) 172301; W. Cassing, NPA 791 (2007) 365: NPA 793 (2007), H. Berrehrah et al, Int.J.Mod.Phys. E25 (2016) 1642003; P. Moreau et al., PRC100 (2019) 014911; O. Soloveva et al., PRC101 (2020) 045203

Theoretical basis \rightarrow realization :

- introduce an ansatz (HTL; with few parameters) for the (T, μ_B) dependence of masses/widths
- □ ansatz for coupling constant *g* based on the IQCD entropy density as a function of T at μ_B =0
- **\Box** scaling hypothesis for critical temperature $T_c(\mu_q)$:
- evaluate the QGP thermodynamics in equilibrium using the Kadanoff-Baym theory
- **□** fix DQPM parameters by comparison to the entropy density s, pressure P, energy density ε from DQPM to IQCD results at $μ_B = 0$

\rightarrow obtain the properties of the QGP at (T, μ_B)

12

Parton properties

Modeling of the quark/gluon masses and widths (inspired by HTL calculations)

Masses:

Widths:

$$M_{q(\bar{q})}^{2}(T,\mu_{B}) = \frac{N_{c}^{2}-1}{8N_{c}}g^{2}(T,\mu_{B})\left(T^{2}+\frac{\mu_{q}^{2}}{\pi^{2}}\right)$$
$$M_{g}^{2}(T,\mu_{B}) = \frac{g^{2}(T,\mu_{B})}{6}\left(\left(N_{c}+\frac{1}{2}N_{f}\right)T^{2}+\frac{N_{c}}{2}\sum_{q}\frac{\mu_{q}^{2}}{\pi^{2}}\right)$$

➔ DQPM :

Fit lattice ------ P/T⁴ ------ e/T⁴

s/T³

0.20

0.25

0.30

T [GeV]

15

10

0.15

only one parameter (c = 14.4) + (T, μ_B) - dependent coupling constant has to be determined from lattice results

EoS $\mu_B = 0$ from WB

0.35

Phys.Lett. B730 (2014) 99-104

0.40

0.45

$$\gamma_{q(\bar{q})}(T,\mu_B) = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2(T,\mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T,\mu_B)} + 1\right)$$
$$\gamma_g(T,\mu_B) = \frac{1}{3} N_c \frac{g^2(T,\mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T,\mu_B)} + 1\right)$$

Coupling g: input - IQCD entropy density sfunction of T at μ_B =0

$$g^2(s/s_{SB}) = d \left((s/s_{SB})^e - 1 \right)^f$$

 $s_{SB}^{QCD} = 19/9\pi^2 T^3$

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003, 0.50

DQPM at finite (T, μ_q): scaling hypothesis

Scaling hypothesis for the effective temperature T* for N_f = N_c = 3

$$\mu_u = \mu_d = \mu_s = \mu_q$$

$$T^{*2} = T^2 + \frac{\mu_q^2}{\pi^2}$$

Coupling:

$$g(T/T_c(\mu=0)) \longrightarrow g(T^{\star}/T_c(\mu))$$

□ Critical temperature $T_c(\mu_q)$: obtained by assuming a constant energy density ε for the system at $T=T_c(\mu_q)$, where ε at $T_c(\mu_q=0)=156$ GeV is fixed by IQCD at $\mu_q=0$

$$\frac{T_c(\mu_q)}{T_c(\mu_q=0)} = \sqrt{1 - \alpha \ \mu_q^2} \approx 1 - \alpha/2 \ \mu_q^2 + \cdots$$

(MeV) 150 IQCD emperature 100 freeze-out [Becottini et.ol. parametrization [Andronic et.al, 2008] 50 odified statistical fit [Becattini et.al. 2012] from fluctuations [Albo et.al. 2014] 200 400 Baryonic chemical potential (MeV) 0.18 0.16 0.14 0.12 $\mu = \mu = \mu_{0}/3$ **T[GeV]** 0.10 DQPM15 IQCD iµ 0.08 Cea et al. 1403.0821 0.06 μ **=0** IQCD Taylor-exp. 0.04 Endrodi et al. 1102.1356 0.02 0.00 0.2 0.4 0.6 μ_в[GeV]

$$\alpha \approx 8.79 \text{ GeV}^{-2}$$

! Consistent with lattice QCD:

IQCD: C. Bonati et al., PRC90 (2014) 114025

$$\frac{T_c(\mu_B)}{T_c} = 1 - \kappa \left(\frac{\mu_B}{T_c}\right)^2 + \cdots$$

IQCD $\kappa = 0.013(2)$ ·

 $\leftarrow \sim \kappa_{DOPM} \approx 0.0122$

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

DQPM thermodynamics at finite (T, μ_q)

Entropy and baryon density in the quasiparticle limit (G. Baym 1998):

$$s^{dqp} = n^{dqp} = -\int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \left[d_g \frac{\partial n_B}{\partial T} \left(\operatorname{Im}(\ln - \Delta^{-1}) + \operatorname{Im} \Pi \operatorname{Re} \Delta \right) \right]$$

$$+ \sum_{q=u,d,s} d_q \frac{\partial n_F(\omega - \mu_q)}{\partial T} \left(\operatorname{Im}(\ln - S_q^{-1}) + \operatorname{Im} \Sigma_q \operatorname{Re} S_q \right)$$

$$+ \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial T} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right)$$

$$+ \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial T} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right)$$

$$+ \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right)$$

DQPM: parton properties

➔ Lorentzian spectral function:

D Masses and widths as a function of (T, μ_B)

Partonic interactions: matrix elements

DQPM partonic cross sections → leading order diagrams

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

Differential cross sections

• At lower s: off-shell σ < on -shell σ since $\omega_3 + \omega_4 < \sqrt{s}$

Total cross section

DQPM: Mean-field potential for quasiparticles

Space-like part of energy-momentum tensor $T_{\mu\nu}$ defines the potential energy density:

$$V_p(T, \mu_q) = T_{g-}^{00}(T, \mu_q) + T_{q-}^{00}(T, \mu_q) + T_{\bar{q}-}^{00}(T, \mu_q)$$

space-like gluons + space-like guarks+antiguarks

→ mean-field scalar potential (1PI) for quarks and gluons (U_q , U_g) vs parton scalar density ρ_s :

$$U_s(\rho_s) = \frac{dV_p(\rho_s)}{d\rho_s} \qquad \rho_S = N_g^+ + N_q^+ + N_{\overline{q}}^+$$

$$Uq=Us$$
, $Ug\sim 2Us$

Quasiparticle potentials (Uq, Ug) are repulsive !

→ the force acting on a quasiparticle j:

$$F \sim M_j / E_j \nabla U_s(x) = M_j / E_j \ dU_s / d\rho_s \ \nabla \rho_s(x)$$
$$j = g, q, \bar{q}$$

$$\begin{split} \tilde{\mathrm{T}}\mathbf{r}_{\mathbf{g}}^{\pm} \cdots &= \mathbf{d}_{\mathbf{g}} \int \frac{\mathrm{d}\omega}{2\pi} \frac{\mathrm{d}^{3}\mathbf{p}}{(2\pi)^{3}} \, 2\omega \, \rho_{\mathbf{g}}(\omega) \, \mathbf{\Theta}(\omega) \, \mathbf{n}_{\mathbf{B}}(\omega/\mathbf{T}) \, \, \mathbf{\Theta}(\pm\mathbf{P}^{2}) \cdots \\ \tilde{\mathrm{T}}\mathbf{r}_{q}^{\pm} \cdots &= d_{q} \int \frac{\mathrm{d}\omega}{2\pi} \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \, 2\omega \, \rho_{q}(\omega) \, \mathbf{\Theta}(\omega) \, n_{F}((\omega-\mu_{q})/T) \, \, \mathbf{\Theta}(\pm P^{2}) \cdots \\ \tilde{\mathrm{T}}\mathbf{r}_{\bar{q}}^{\pm} \cdots &= d_{\bar{q}} \int \frac{\mathrm{d}\omega}{2\pi} \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \, 2\omega \, \rho_{\bar{q}}(\omega) \, \mathbf{\Theta}(\omega) \, n_{F}((\omega+\mu_{q})/T) \, \, \mathbf{\Theta}(\pm P^{2}) \cdots \end{split}$$

Cassing, NPA 791 (2007) 365: NPA 793 (2007)

DQPM (T, \mu_q): transport properties at finite (T, μ_q)

QGP near equilibrium

The properties of QGP in HICs \rightarrow transport coefficients

Properties of the QGP near equilibrium are characterized by transport coefficients

Shear η , bulk viscosity ζ , ... are 'input' for the viscous hydrodynamic models!

The properties of QGP from HIC - shear viscosity

The shear viscosity of a system measures its resistance to flow. Wikipedia: Viscosity can be conceptualized as quantifying the frictional force that arises between adjacent layers of fluid that are in relative motion.

→ QGP : close to an ideal liquid, not a gas of weakly interacting quarks and gluons

pQCD: shear viscosity η

QCD: Pure Yang-Mills (only gluons)

LO (Leading order) perturbative QCD calculations: η/s > 0.5 at T near T_C 'AMY': P.B. Arnold, G.D. Moore and L.G. Yaffe,, JHEP 11 (2000) 001)

NLO (Next-to-leading order):

(J. Ghiglieri, G.D. Moore, D. Teaney, JHEP 1803 (2018) 179):

"The next-to-leading order corrections are large and bring η /s down by more than a factor of 3 at physically relevant couplings.

The perturbative expansion is problematic even at T ~100 GeV"

Transport coefficients: shear viscosity η

\rightarrow Weak dependence of shear viscosity on $\mu_{\rm B}$

Lattice QCD: N. Astrakhantsev et al, JHEP 1704 (2017) 101

Transport coefficients: bulk viscosity ζ

Transport coefficients: electric conductivity σ_e/T

$\sigma_0 \rightarrow$ Probe of electric properties of the QGP

Relaxation Time Approximation

$$\sigma_0^{\text{RTA}}(T,\mu_B) = \frac{e^2}{3T} \sum_{i=q,\bar{q}} q_i^2 \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}^2}{E_i^2}$$

$$\times \overline{\tau_i(\mathbf{p},T,\mu_B)} d_i (1-f_i) f_i$$

the QCD matter even at T~ T_c is a much better electric conductor than Cu or Ag (at room temperature) by a factor of 500 !

Exp. observables – photon and dilepton spectra Photon emission: rates for $q_0 \rightarrow 0$ are related to electric conductivity σ_0 $q_0 \frac{dR}{d^4 x d^3 q}\Big|_{q_0 \rightarrow 0} = \frac{T}{4\pi^3} \sigma_0$

O. Soloveva et al., PRC110 (2020) 045203

Review: H. Berrehrah et al. Int.J.Mod.Phys. E25 (2016) 1642003

QGP: in-equilibrium -> off-equilibrium

microscopic transport theory!

From weakly to strongly interacting systems

Properties of matter (on hadronic and partonic levels) in heavy-ion collisions:
 QGP – strongly interacting system! Degrees of freedom – dressed partons!
 Hadronic matter – in-medium effects – modification of hadron properties at finite T,μ_B (vector mesons, strange mesons)

Many-body theory: Strong interaction → large width = short life-time

→ broad spectral function → quantum object

How to describe the dynamics of broad strongly interacting quantum states in transport theory?

semi-classical BUU

first order gradient expansion of quantum Kadanoff-Baym equations

generalized transport equations based on Kadanoff-Baym dynamics

Barcelona / Valencia group

Dynamical description of strongly interacting systems

Quantum field theory ->

Kadanoff-Baym dynamics for resummed single-particle Green functions S[<]

 $\hat{S}_{0x}^{-1} S_{xy}^{<} = \Sigma_{xz}^{ret} \odot S_{zy}^{<} + \Sigma_{xz}^{<} \odot S_{zy}^{adv}$

Green functions S[<]/self-energies Σ :

 $iS_{xy}^{<} = \eta \langle \{ \Phi^{+}(y) \Phi(x) \} \rangle$ $iS_{xy}^{>} = \langle \{ \boldsymbol{\Phi}(y) \boldsymbol{\Phi}^{+}(x) \} \rangle$ $iS_{xy}^{c} = \langle T^{c} \{ \Phi(x) \Phi^{+}(y) \} \rangle - causal$ $iS_{yy}^{a} = \langle T^{a} \{ \Phi(x) \Phi^{+}(y) \} \rangle$ -anticausal Integration over the intermediate spacetime

(1962)

 $S_{rv}^{ret} = S_{rv}^{c} - S_{rv}^{<} = S_{rv}^{>} - S_{rv}^{a} - retarded$ $\hat{S}_{0x}^{-1} \equiv -(\partial_x^{\mu}\partial_x^{x} + M_{0}^{2})$ $S_{rv}^{adv} = S_{rv}^{c} - S_{rv}^{>} = S_{rv}^{<} - S_{rv}^{a} - advanced$ $\eta = \pm 1(bosons / fermions)$ $T^{a}(T^{c}) - (anti-)time - ordering operator$

Leo Kadanoff

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym equations and separation into the real and imaginary parts one gets:

<u>Backflow term</u> incorporates the off-shell behavior in the particle propagation ! vanishes in the quasiparticle limit $A_{XP} \rightarrow \delta(p^2-M^2)$

GTE: Propagation of the Green's function $iS_{XP}^{<}=A_{XP}N_{XP}$, which carries information not only on the number of particles (N_{XP}), but also on their properties, interactions and correlations (via A_{XP})

Spectral function:

Life time $\tau = \frac{nc}{r}$

$$A_{XP} \;=\; rac{\Gamma_{XP}}{(\,P^2\,-\,M_0^2\,-\,Re\Sigma_{XP}^{ret})^2\,+\,\Gamma_{XP}^2/4}$$

 $\Gamma_{XP} = -Im \Sigma_{XP}^{ret} = 2 p_0 \Gamma$ – ,width' of spectral function = reaction rate of particle (at space-time position X) 4-dimentional generalizaton of the Poisson-bracket:

 $\diamond \{F_1\}\{F_2\} := \frac{1}{2} \left(\frac{\partial F_1}{\partial X_{\mu}} \frac{\partial F_2}{\partial P^{\mu}} - \frac{\partial F_1}{\partial P_{\mu}} \frac{\partial F_2}{\partial X^{\mu}} \right)$

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

General testparticle off-shell equations of motion

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

 \Box Employ testparticle Ansatz for the real valued quantity *i* S[<]_{XP}

$$F_{XP} = A_{XP}N_{XP} = i S_{XP}^{<} \sim \sum_{i=1}^{N} \delta^{(3)}(\vec{X} - \vec{X}_{i}(t)) \delta^{(3)}(\vec{P} - \vec{P}_{i}(t)) \delta(P_{0} - \epsilon_{i}(t))$$

insert in generalized transport equations and determine equations of motion !

General testparticle Cassing's off-shell equations of motion for the time-like particles:

$$\begin{split} \frac{d\vec{X}_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[2\vec{P}_{i} + \vec{\nabla}_{P_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{P_{i}} \Gamma_{(i)} \right], \\ \frac{d\vec{P}_{i}}{dt} &= -\frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\vec{\nabla}_{X_{i}} Re\Sigma_{i}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{X_{i}} \Gamma_{(i)} \right], \\ \frac{d\epsilon_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\frac{\partial Re\Sigma_{(i)}^{ret}}{\partial t} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial t} \right], \\ \mathbf{with} \quad F_{(i)} \equiv F(t, \vec{X}_{i}(t), \vec{P}_{i}(t), \epsilon_{i}(t)) \\ C_{(i)} &= \frac{1}{2\epsilon_{i}} \left[\frac{\partial}{\partial\epsilon_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial\epsilon_{i}} \right] \end{split}$$

Collision term for reaction 1+2->3+4:

$$\begin{split} \underline{I_{coll}(X,\vec{P},M^2)} &= Tr_2 Tr_3 Tr_4 \underline{A}(X,\vec{P},M^2) \underline{A}(X,\vec{P}_2,M_2^2) \underline{A}(X,\vec{P}_3,M_3^2) \underline{A}(X,\vec{P}_4,M_4^2) \\ & |\underline{G}((\vec{P},M^2) + (\vec{P}_2,M_2^2) \rightarrow (\vec{P}_3,M_3^2) + (\vec{P}_4,M_4^2))|_{\mathcal{A},\mathcal{S}}^2} \ \delta^{(4)}(P + P_2 - P_3 - P_4) \\ & [N_{X\vec{P}_3M_3^2} N_{X\vec{P}_4M_4^2} \, \bar{f}_{X\vec{P}M^2} \, \bar{f}_{X\vec{P}_2M_2^2} - N_{X\vec{P}M^2} \, N_{X\vec{P}_2M_2^2} \, \bar{f}_{X\vec{P}_3M_3^2} \, \bar{f}_{X\vec{P}_4M_4^2}] \\ & \text{,gain' term} \\ \end{split}$$

with $\bar{f}_{X\vec{P}M^2} = 1 + \eta N_{X\vec{P}M^2}$ and $\eta = \pm 1$ for bosons/fermions, respectively.

The trace over particles 2,3,4 reads explicitly

The transport approach and the particle spectral functions are fully determined once the in-medium transition amplitudes G are known in their off-shell dependence!

Parton-Hadron-String-Dynamics (PHSD)

PHSD is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions

Initial A+A collisions :

N+N \rightarrow string formation \rightarrow decay to pre-hadrons + leading hadrons

Partonic phase

Partonic phase - QGP:

Given Stage Formation of QGP stage if local $\varepsilon > \varepsilon_{critical}$:

dissolution of pre-hadrons \rightarrow partons

QGP is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD EoS for finite T and μ_B (crossover)

- Degrees-of-freedom: strongly interacting quasiparticles: massive quarks and gluons (g,q,q_{bar}) with sizeable collisional widths in a self-generated mean-field potential
 - Interactions: (quasi-)elastic and inelastic collisions of partons

Hadronic phase

Hadronization to colorless off-shell mesons and baryons: Strict 4-momentum and quantum number conservation

Hadronic phase: hadron-hadron interactions – off-shell HSD

UND string mo

Traces of the QGP in observables in high energy heavy-ion collisions

t = 7.31921 fm/c

Time evolution of the partonic energy fraction vs energy

□ Strong increase of partonic phase with energy from AGS to RHIC

SPS: Pb+Pb, 160 A GeV: only about 40% of the converted energy goes to partons; the rest is contained in the large hadronic corona and leading partons
 RHIC: Au+Au, 21.3 A TeV: up to 90% - QGP

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 V. Konchakovski et al., Phys. Rev. C 85 (2012) 011902

Time evolution of energy density

PHSD: 1 event Au+Au, 200 GeV, b = 2 fm

 $\Delta V: \Delta x = \Delta y = 1 \text{ fm}, \Delta z = 1/\gamma \text{ fm}$

R. Marty et al., PRC 92 (2015) 015201

Central Pb + Pb at SPS energies

Central Au+Au at RHIC

PHSD gives harder m_T spectra and works better than HSD (without QGP) at high energies – RHIC, SPS (and top FAIR, NICA)

however, at low SPS (and low FAIR, NICA) energies the effect of the partonic phase decreases due to the decrease of the partonic fraction

> W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162

Anisotropy coefficients v_n

Non central Au+Au collisions :

interaction between constituents leads to a pressure gradient \rightarrow spatial asymmetry is converted to an asymmetry in momentum space \rightarrow collective flow

$$\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \psi_n)\right]\right) \qquad v_1$$
$$v_n = \left\langle\cos n\left(\varphi - \psi_n\right)\right\rangle, \quad n = 1, 2, 3..,$$

 v_1 : directed flow v_2 : elliptic flow v_3 : triangular flow

 $v_2 = 7\%, v_1 = 0$

 $v_2 = -7\%, v_1 = 0$

 $v_2 = 7\%, v_1 = -7\%$

 $v_2 > 0$ indicates in-plane emission of particles $v_2 < 0$ corresponds to a squeeze-out perpendicular to the reaction plane (out-of-plane emission)

Hydrodynamic models: elliptic flow v₂

Comparison between hydro simulations and experimental data for the elliptic flow

Ideal hydro: reproduces exp. data at low p_T , overestimates v_2 at $p_T > 1.2$ GeV/c

→ Viscosity of QGP has to be accounted for → viscous hydro

Elliptic flow v_2 is sensitive to η/s

V. Konchakovski, E. Bratkovskaya, W. Cassing, V. Toneev, V. Voronyuk, Phys. Rev. C 85 (2012) 011902

V_n (n=2,3,4,5) of charged particles from PHSD at LHC

v_n (n=3,4,5) show weak centrality dependence

 v_n (n=3,4,5) develops by interactions in the QGP and in the final hadronic phase

V. Konchakovski, W. Cassing, V. Toneev, J. Phys. G: Nucl. Part. Phys 42 (2015) 055106

Traces of the QGP at finite μ_q in observables in high energy heavy-ion collisions

□ For each cell in PHSD :

In order to extract (T, μ_B) use IQCD relations (up to 4th order) - Taylor series :

(1)

$$\Delta \epsilon / T^4 \approx \frac{1}{2} \left(T \frac{\partial \chi_2^B(T)}{\partial T} + 3\chi_2^B(T) \right) \left(\frac{\mu_B}{T} \right)^2 + \cdots$$

* Use baryon number susceptibilities χ_n from IQCD

• obtain (T, μ_B) by solving the system of coupled equations using ϵ^{PHSD} and n_B^{PHSD} * Done by the Newton-Raphson method

Illustration for a HIC ($\sqrt{s_{NN}} = 19.6$ GeV)

181

Au + Au $\sqrt{s_{NN}}$ = 19.6 GeV – b = 2 fm – Section view

Illustration for a HIC ($\sqrt{s_{NN}} = 17$ GeV)

PHS Distribution of cells ($|y_{cell}| < 0.5$) with T>T_C 2.5 μ_в/T=1 2.0 μ_в/Τ=2 t > 4 fm/c- 1.5 μ_в/T=3 - 1.0 - 0.5 PHSD5.0 - |y_{cell}| < 0.5 t > 4 fm/c -0.1 0.0 0.2 0.3 0.4 0.5 0.6 0.1

P. Moreau et al., PRC100 (2019) 014911

μ_в [GeV]

-0.2

Results for HICs from PHSD 4.0 and 5.0

- Comparison between three different results:
 - **1)** PHSD 4.0 : only $\sigma(T)$ and $\rho(T)$
 - $\sigma(T)$ parton interaction cross sections $\rho(T)$ – spectral function of partons \rightarrow (masses and widths)

2) PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B = 0)$ and $\rho(T, \mu_B = 0)$

In v.5.0: + angular dependence of diff. partonic cross sections PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B)$ and $\rho(T, \mu_B)$

3)

Results for HICs ($\sqrt{s_{NN}}$ = 200 GeV)

Results for HICs ($\sqrt{s_{NN}} = 17$ GeV)

Results for HICs ($\sqrt{s_{NN}}$ = 7.6 GeV)

Elliptic flow $v_2 (\sqrt{s_{NN}} = 200 \text{ GeV } vs 27 \text{GeV})$

O. Soloveva et al., arXiv:2001.07951, MDPI Particles 2020, 3, 178

Results for v₁ for HICs ($\sqrt{s_{NN}}$ = 27 GeV)

Messages from v₁, v₂ analysis: weak dependence of v₁, v₂

on μ_B

small influence on v_1 , v_2 of explicit \sqrt{s} -dependence of total partonic cross sections σ + angular dependence of $d\sigma/dcos\theta$ due to the relatively small QGP volume

strong flavor dependence of v₁, v₂

O. Soloveva et al., arXiv:2001.07951, MDPI Particles 2020, 3, 178

- $\Box (T, \mu_B)$ -dependent partonic cross sections and masses/widths of quarks and gluons have been implemented in PHSD
- \Box High- μ_B region is probed at low bombarding energies or high rapidity regions
- But, QGP fraction is small at low bombarding energies:
 → no effects of (T, μ_B)-dependent partonic cross sections and masses/widths seen in 'bulk' observables dN/dy, p_T-spectra
- □ Flow harmonics **v**₁, **v**₂ show :
 - visible sensitivity to the explicit \sqrt{s} -dependence of total partonic cross sections σ + angular dependence of d σ /dcos θ , however, weak dependence on μ_B

Outlook:

- $\succ\,$ More precise EoS at large μ_B
- > Possible 1st order phase transition at even larger μ_B ?!

High- μ_B region of QCD phase diagram \rightarrow challenge for FAIR, NICA, BES RHIC

Thanks to:

GOETHE

Helmholtz International Center

HGS-HIRe for FAIR

UNIVERSITÄT

FRANKFURT AM MAIN

r si

PHSD group - 2021

GSI & Frankfurt University Olga Soloveva, Taesoo Song, Lucia Oliva, Gabriele Coci, Ilia Grishmanovskii, Elena Bratkovskaya

Giessen University: Wolfgang Cassing

Former group members: Olena Linnyk Vitalii Ozvenchuk Volodya Konchakovski Hamza Berrehrah **Rudy Marty**

Pierre Moreau Thorsten Steinert Alessia Palmese **Eduard Seifert Andrej liner Daniel Cabrera**

Collaborations: Frankfurt University: **Carsten Greiner, Juan Torres-Rincon**

> **SUBATECH, Nantes University:** Jörg Aichelin, Pol-Bernard Gossiaux, Marlene Nahrgang, Klaus Werner

JINR, Dubna: Vadim Voronyuk, Viktor Kireev

> **Barcelona University:** Laura Tolos

Duke University: Steffen Bass, Pierre Moreau

> **Catania University:** Vincenzo Greco

Universitat Autònomal de Barcelona

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

PHSD home page: http://theory.gsi.de/~ebratkov/phsd-project/PHSD/index1.html

Deutsche DEC Forschungsgemeinschaft

DAAD

