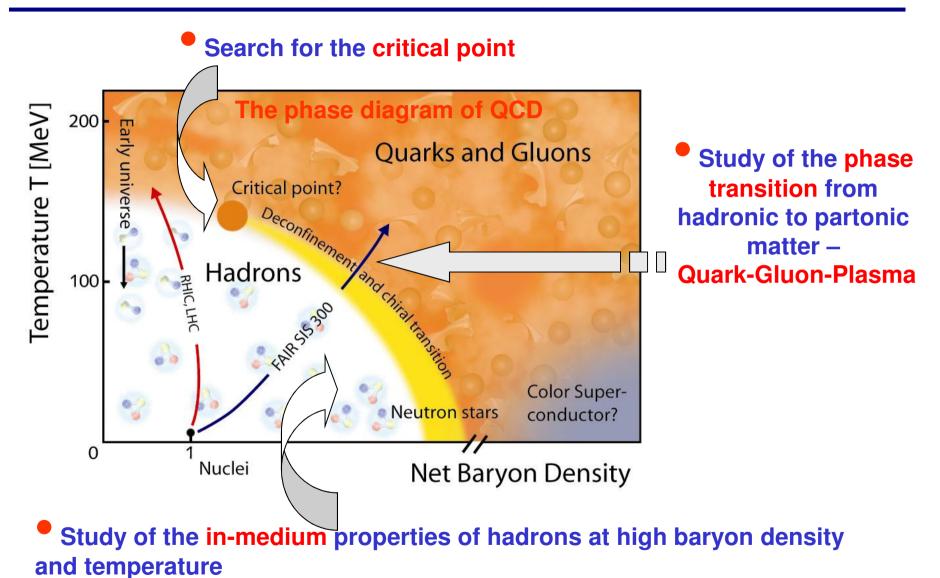
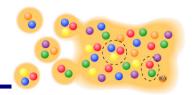


Electromagnetic emissivity of hot and dense matter

Elena Bratkovskaya


Institut für Theoretische Physik & FIAS, Uni. Frankfurt


Symposium on 'New Horizons in Fundamental Physics - From Neutron Nuclei via Superheavy Elements and Supercritical Fields to Neutron Stars and Cosmic Rays',

23-28 November 2015, Makutsi Safari Farm, South Africa

The holy grail of heavy-ion physics:

From SIS to LHC: from hadrons to partons

The goal: to study of the phase transition from hadronic to partonic matter and properties of the Quark-Gluon-Plasma from a microscopic origin

- need a consistent non-equilibrium transport model
- **□** with explicit parton-parton interactions (i.e. between quarks and gluons)
- □ explicit phase transition from hadronic to partonic degrees of freedom
- \square IQCD EoS for partonic phase (,cross over at $\mu_q=0$)
- □ Transport theory for strongly interacting systems: off-shell Kadanoff-Baym equations for the Green-functions $S_h^{(x,p)}$ in phase-space representation for the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

QGP phase described by

Dynamical QuasiParticle Model (DQPM)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919;
 NPA831 (2009) 215;
 W. Cassing, EPJ ST 168 (2009) 3

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Dynamical QuasiParticle Model (DQPM) - Basic ideas:

DQPM describes QCD properties in terms of ,resummed' single-particle Green's functions – in the sense of a two-particle irreducible (2PI) approach:

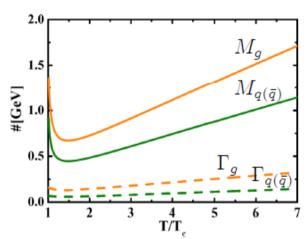
```
Gluon propagator: \Delta^{-1} = P^2 - \Pi gluon self-energy: \Pi = M_g^2 - i2\Gamma_g \omega
```

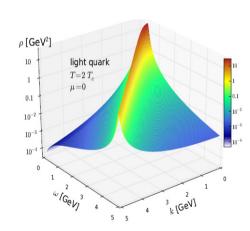
Quark propagator:
$$S_q^{-1} = P^2 - \Sigma_q$$
 quark self-energy: $\Sigma_q = M_q^2 - i2\Gamma_q \omega$

- the resummed properties are specified by complex self-energies which depend on temperature:
- the real part of self-energies (Σ_q , Π) describes a dynamically generated mass (M_q , M_g);
- the imaginary part describes the interaction width of partons $(\Gamma_{\rm q},\Gamma_{\rm g})$
- space-like part of energy-momentum tensor $T_{\mu\nu}$ defines the potential energy density and the mean-field potential (1PI) for quarks and gluons (U_q , U_g)
- 2PI framework guaranties a consistent description of the system in- and out-off equilibrium on the basis of Kadanoff-Baym equations with proper states in equilibrium

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

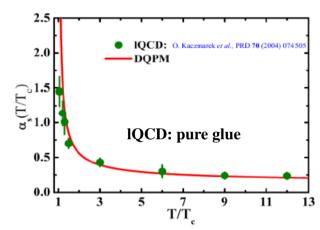
The Dynamical QuasiParticle Model (DQPM)

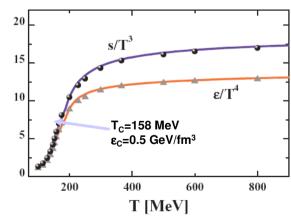

☐ Basic idea: interacting quasi-particles: massive quarks and gluons (g, q, q_{bar})

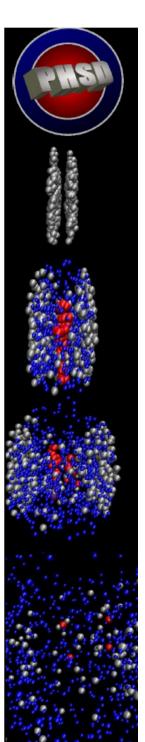

with Lorentzian spectral functions:

$$\rho_{i}(\boldsymbol{\omega},T) = \frac{4\omega\Gamma_{i}(T)}{\left(\omega^{2} - \vec{p}^{2} - M_{i}^{2}(T)\right)^{2} + 4\omega^{2}\Gamma_{i}^{2}(T)} \qquad (i = q, \overline{q}, g)$$

- it to lattice (IQCD) results (e.g. entropy density) with 3 parameters
- → Quasi-particle properties:


large width and mass for gluons and quarks





DQPM gives transition rates for the formation of hadrons
 → PHSD

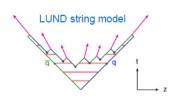
DQPM: Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Parton-Hadron-String-Dynamics (PHSD)

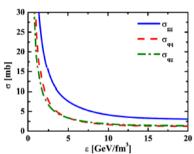
☐ Initial A+A collisions – HSD:

 $N+N \rightarrow$ string formation \rightarrow decay to pre-hadrons

- □ Formation of QGP stage if $\varepsilon > \varepsilon_{critical}$:

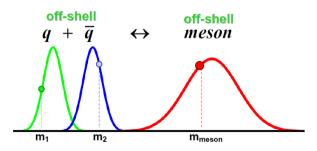

 dissolution of pre-hadrons \rightarrow (DQPM) \rightarrow massive quarks/qluons + mean-field potential U_a
- □ Partonic stage QGP : based on the Dynamical Quasi-Particle Model (DQPM)
 - (quasi-) elastic collisions:

$$q+q \rightarrow q+q$$
 $g+q \rightarrow g+q$ $q+\overline{q} \rightarrow q+\overline{q}$ $g+\overline{q} \rightarrow g+\overline{q}$


$$\overline{q} + \overline{q} \rightarrow \overline{q} + \overline{q}$$
 $g + g \rightarrow g + g$

• inelastic collisions:

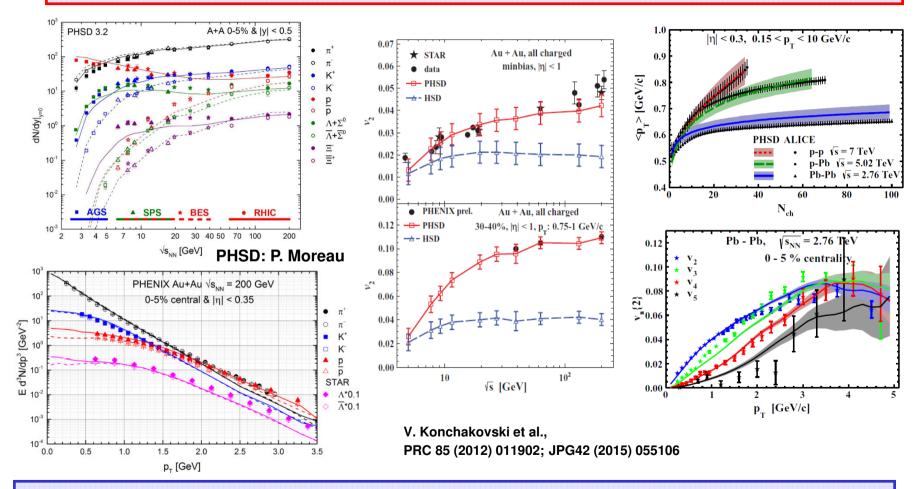
$$q + \overline{q} \rightarrow g$$
 $q + \overline{q} \rightarrow g + g$
 $g \rightarrow q + \overline{q}$ $g \rightarrow g + g$



☐ Hadronization (based on DQPM):

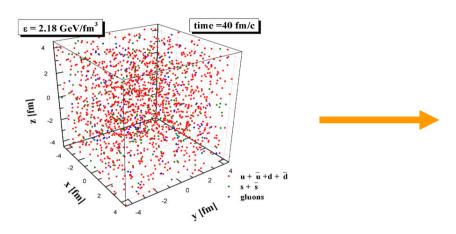
$$g \rightarrow q + \overline{q}, \quad q + \overline{q} \leftrightarrow meson \ (or'string')$$

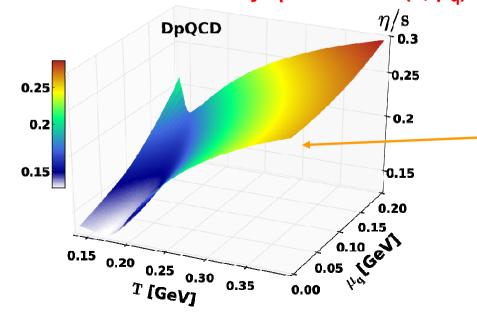
 $q + q + q \leftrightarrow baryon \ (or'string')$



□ Hadronic phase: hadron-hadron interactions – off-shell HSD

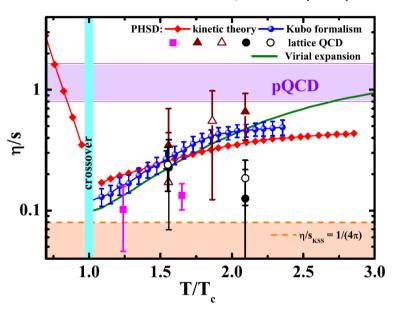
Description of A+A with PHSD


☐ Important: to be conclusive on charm observables, the light quark dynamics must be well under control!


 \square PHSD provides a good description of ,bulk' observables (y-, p_T-distributions, flow coeficients v_n , ...) from SPS to LHC

I. Transport properties at finite (T, μ_q) : η/s

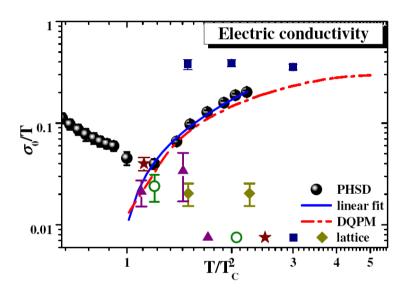
PHSD in a box:



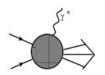
DQPM: Shear viscosity η /s at finite (T, μ_q)

PHSD: shear viscosity η /s at finite T

V. Ozvenchuk et al., PRC 87 (2013) 064903


 η/s : $\mu_q=0$ \rightarrow finite μ_q : smooth increase as a function of (T, μ_q)

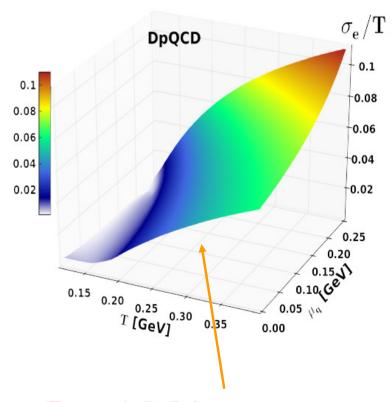
H. Berrehrah et al. arXiv:1412.1017


II. Transport properties at finite (T, μ_a): σ_e/T

PHSD in a box: Electric conductivity σ_e/T at finite T

W. Cassing et al., PRL 110(2013)182301

□ Photon emission: rates at $q_0 \rightarrow 0$ are related to electric conductivity $σ_0$


$$q_0 \frac{dR}{d^4 x d^3 q}\bigg|_{q_0 \to 0} = \frac{T}{4\pi^3} \sigma_0$$

→ Probe of electric properties of the QGP

DQPM:

Electric conductivity σ_e/T at finite (T, μ_a)

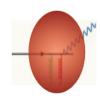
H. Berrehrah et al. arXiv:1412.1017

 σ_e/T : $\mu_q=0$ \rightarrow finite μ_q : smooth increase as a function of (T, μ_q)

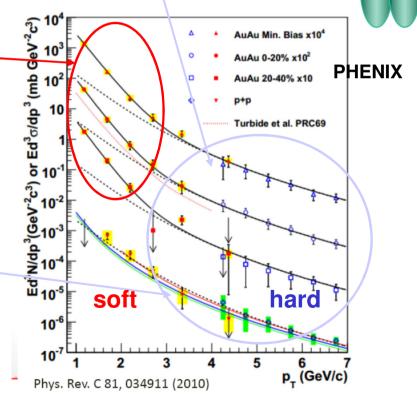
Direct photon flow puzzle

Production sources of photons in p+p and A+A

Decay photons (in pp and AA):

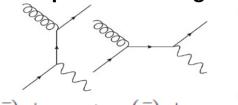

$$m \rightarrow \gamma + X$$
, $m = \pi^0$, η , ω , η , a_1 , ...

- Direct photons: (inclusive(=total) decay) measured experimentally
 - hard photons: (large p_T, in pp and AA)
- prompt (pQCD; initial hard N+N scattering)
- jet fragmentation (pQCD; qq, qq bremsstrahlung) (in AA can be modified by parton energy loss in medium)



jet-γ-conversion in plasma (large p_T, in AA)

jet-medium photons (large p_T, in AA) - scattering of hard partons with thermalized partons $q_{hard}+g_{QGP}\rightarrow \gamma+q$, q_{hard}+qbar_{QGP}→γ+q



Production sources of thermal photons

☐ Thermal QGP:

HTL program (Klimov (1981), Weldon (1982), Braaten & Pisarski (1990); Frenkel & Taylor (1990), ...)

Compton scattering

$$q(\bar{q}) + g \ \to \ q(\bar{q}) + \gamma$$

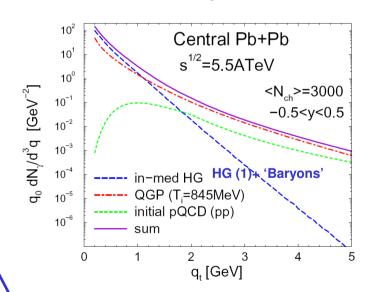
 $q + \bar{q} \rightarrow g + \gamma$

q-qbar annihilation

Rates beyond pQCD: off-shell massive q, g

(used in PHSD)

O. Linnyk, JPG 38 (2011) 025105; Poster by O. Linnyk & QM'2014


← QGP rates used in hydro!

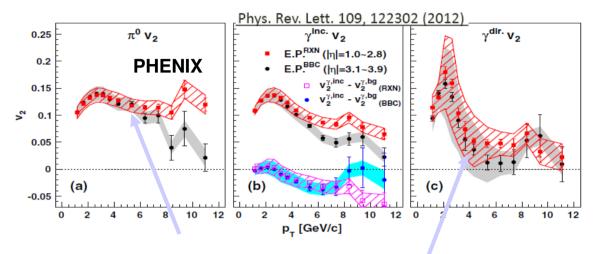
- pQCD LO: 'AMY' Arnold, Moore, Yaffe, JHEP 12, 009 (2001)
- pQCD NLO: Gale, Ghiglieri (2014)
- Hadronic sources:
 - (1) secondary mesonic interactions: $\pi + \pi \rightarrow \rho + \gamma$, $\rho + \pi \rightarrow \pi + \gamma$, $\pi + K \rightarrow \rho + \gamma$, ...
 - (2) meson-meson and meson-baryon bremsstrahlung:

$$m+m \rightarrow m+m+\gamma, \quad m+B \rightarrow m+B+\gamma,$$

 $m=\pi,\eta,\rho,\omega,K,K^*,\dots, B=p,\Delta,\dots$

Models: chiral models, OBE, SPA ...

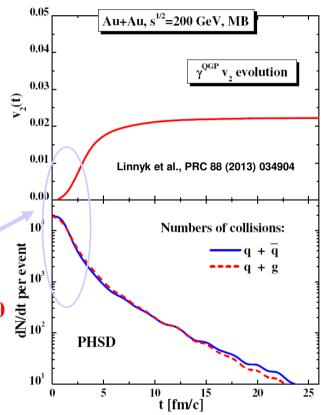
Kapusta, Gale, Haglin (91), Rapp (07), ...



HG rates (1) used in hydro ('TRG' model) - massive Yang-Mills approach:

Turbide, Rapp, Gale, PRC 69, 014903 (2004)

PHENIX: Photon v₂ puzzle



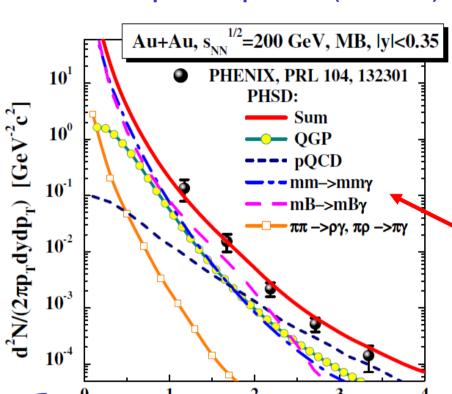
 $\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{1}{2\pi} \left(1 + 2 \sum_{n \geq 1} v_n \cos(n(\phi - \Psi_n^{RP})) \right)$

☐ PHENIX (also now ALICE):

strong elliptic flow of photons $v_2(\gamma^{dir}) \sim v_2(\pi)$

- □ Result from a variety of models: $v_2(\gamma^{dir}) \ll v_2(\pi)$
- □ Problem: QGP radiation occurs at early times when elliptic flow is not yet developed \rightarrow expected $v_2(\gamma^{QGP}) \rightarrow 0$

☐ PHENIX, ALICE experiments - large photon v₃!



Challenge for theory – to describe spectra, v_2 , v_3 simultaneously!

PHSD: photon spectra at RHIC: QGP vs. HG?

Direct photon spectrum (min. bias)

The slope parameter T_{eff} (in MeV)

PHSD
PHENIX

QGP hadrons
Total
[38] 260 ± 20 200 ± 20 220 ± 20 $233 \pm 14 \pm 19$

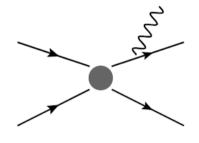
 p_{T} [GeV/c]

Linnyk et al., PRC88 (2013) 034904; PRC 89 (2014) 034908

PHSD:

 QGP gives up to ~50% of direct photon yield below 2 GeV/c

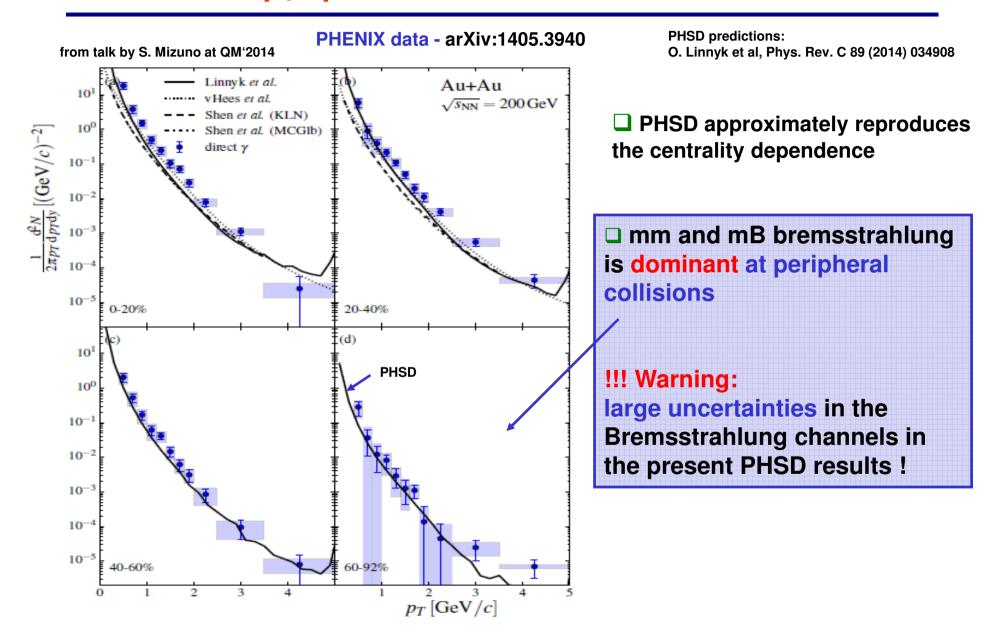
sizeable contribution from hadronic


sources

meson-meson (mm) and meson-Baryon (mB) bremsstrahlung

$$m+m \rightarrow m+m+\gamma$$
,

$$m+B \rightarrow m+B+\gamma$$
,

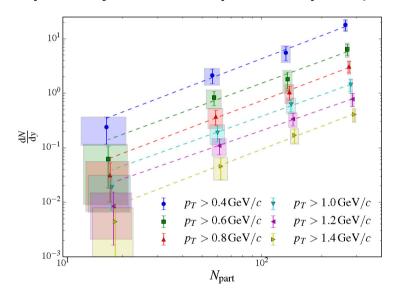

$$m = \pi, \eta, \rho, \omega, K, K^*, \dots$$

 $B = p$

!!! mm and mB bremsstrahlung channels can not be subtracted experimentally!

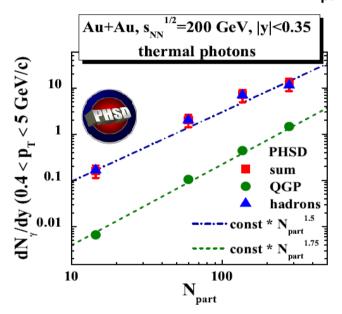
Measured Teff > ,true T → ,blue shift due to the radial flow!

Photon p_T spectra at RHIC for different centralities


Centrality dependence of the ,thermal' photon yield

O. Linnyk et al, Phys. Rev. C 89 (2014) 034908

PHENIX (arXiv:1405.3940):


scaling of thermal photon yield vs centrality: $dN/dy \sim N_{part}^{\alpha}$ with $\alpha \sim 1.48 \pm 0.08$

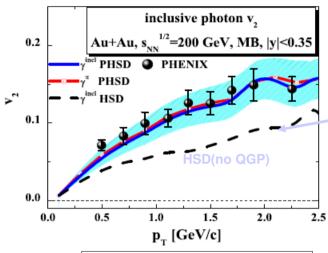
('Thermal' photon yield = direct photons - pQCD)

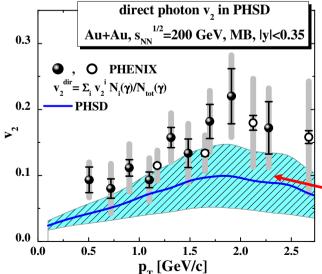
PHSD predictions:

- ☐ Hadronic channels scale as ~ N_{part}^{1.5}
- ☐ Partonic channels scale as ~N_{part}1.75

- \square PHSD: scaling of the thermal photon yield with N_{part}^{α} with $\alpha \sim 1.5$
- □ similar results from viscous hydro: (2+1)d VISH2+1: $\alpha(HG) \sim 1.46$, $\alpha(QGP) \sim 2$, $\alpha(total) \sim 1.7$

→ What do we learn?

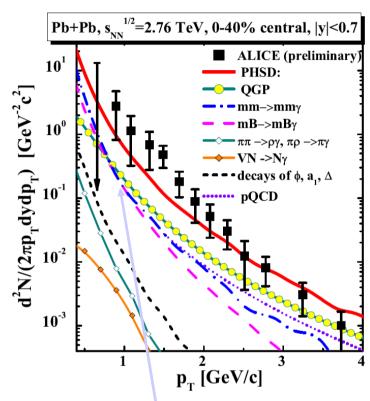

Indications for a dominant hadronic origin of thermal photon production?!


Are the direct photons a barometer of the QGP?

 \square Do we see the QGP pressure in $v_2(\gamma)$ if the photon productions is dominated by hadronic sources?

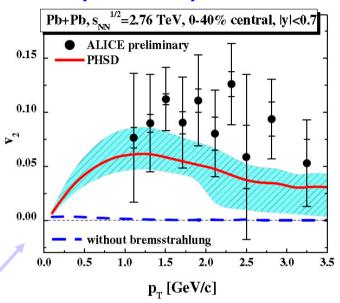
PHSD: Linnyk et al., PRC88 (2013) 034904; PRC 89 (2014) 034908

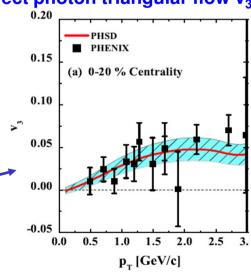
- 1) $v_2(\gamma^{incl}) = v_2(\pi^0)$ inclusive photons mainly come from π^0 decays
- HSD (without QGP) underestimates v₂ of hadrons and inclusive photons by a factor of 2, wheras the PHSD model with QGP is consistent with exp. data
- → The QGP causes the strong elliptic flow of photons indirectly, by enhancing the v₂ of final hadrons due to the partonic interactions


Direct photons (inclusive(=total) – decay):

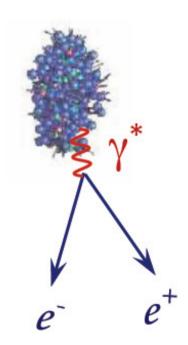
- 2) $v_2(\gamma^{dir})$ of direct photons in PHSD underestimates the PHENIX data :
- v₂(γ^{QGP}) is very small, but QGP contribution is up to 50% of total yield → lowering flow

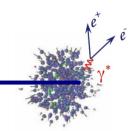
 \rightarrow PHSD: $v_2(\gamma^{dir})$ comes from mm and mB bremsstrahlung!

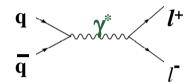

Photons from PHSD at LHC

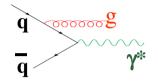


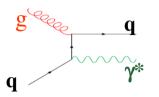
- Is the considerable elliptic flow of direct photons at the LHC also of hadronic origin as for RHIC?!
- ☐ The photon elliptic flow at LHC is lower than at RHIC due to a larger relative QGP contribution / longer QGP phase.
- □ Nonzero triangular flow v₃ of direct photon

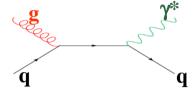

Direct photon elliptic flow v2


Direct photon triangular flow v₃

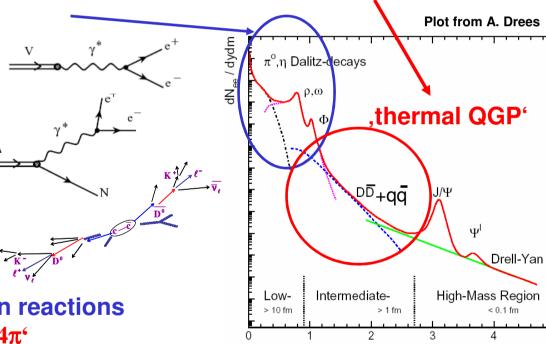

Dileptons




Dilepton sources

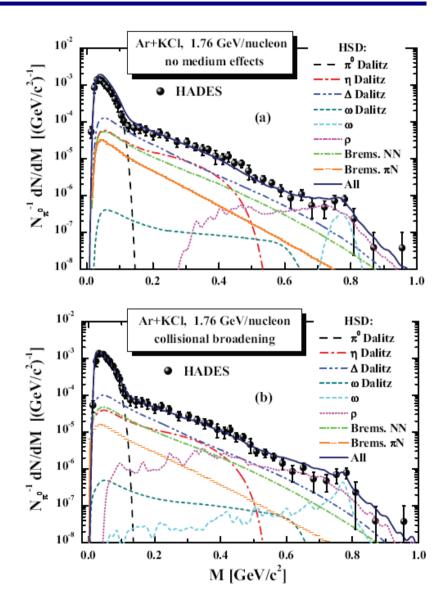


from the QGP via partonic (q,qbar, g) interactions:

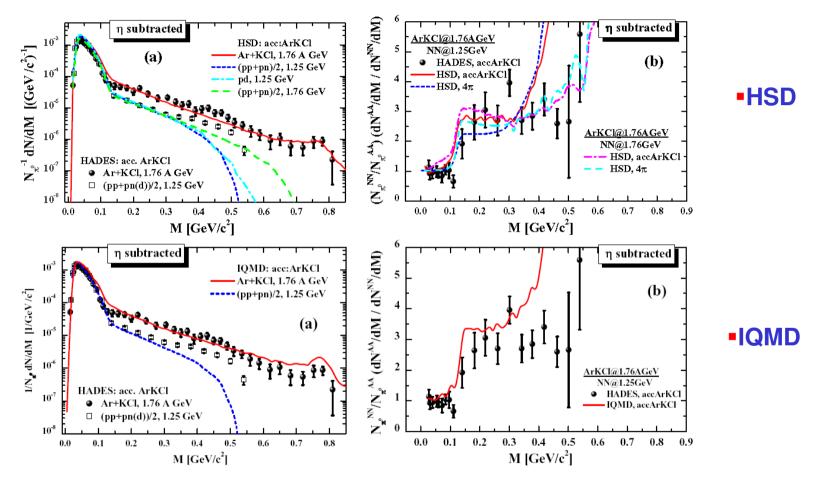


- from hadronic sources:
- •direct decay of vector mesons $(\rho, \omega, \phi, J/\Psi, \Psi')$
- **Dalitz decay** of mesons and baryons $(\pi^0, \eta, \Delta,...)$
- correlated D+Dbar pairs
- •radiation from multi-meson reactions $(\pi+\pi, \pi+\rho, \pi+\omega, \rho+\rho, \pi+a_1)$ $,4\pi'$

! Advantage of dileptons:

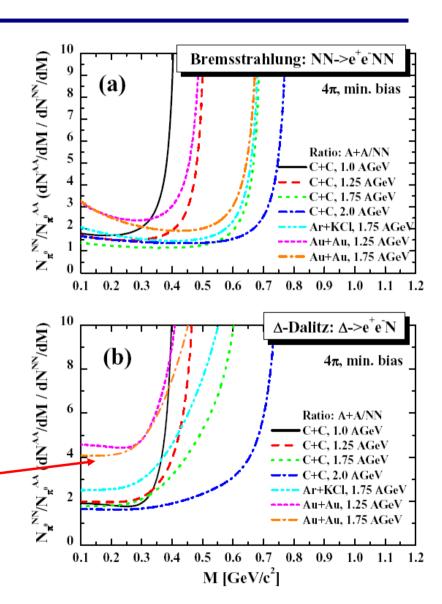

additional "degree of freedom" (M) allows to disentangle various sources

mass [GeV/c²]

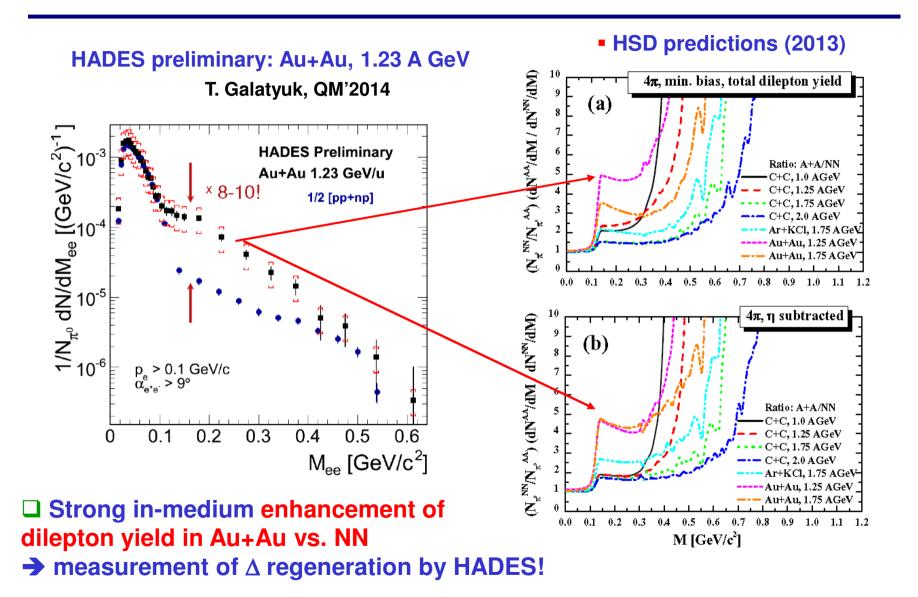

Dileptons at SIS energies - HADES

- \square HADES: dilepton yield dN/dM scaled with the number of pions $N_{\pi 0}$
 - \square Dominant hadronic sourses at M>m_{π}:
- η, Δ Dalitz decays
- NN bremsstrahlung
- direct ρ decay
- ightharpoonup
 ho meson = strongly interecting resonance strong collisional broadening of the ho width
- In-medium effects are more pronounced for heavy systems such as Ar+KCl then C+C
- The peak at M \sim 0.78 GeV relates to ω/ρ mesons decaying in vacuum

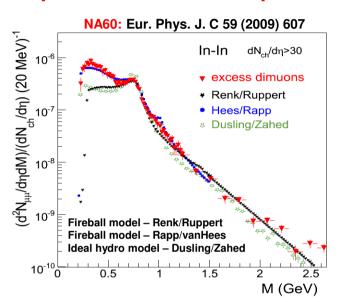
Dileptons at SIS energies: A+A vs. N+N


• ratio of AA/NN spectra (scaled by $N_{\pi 0}$) after subtracted η contribution

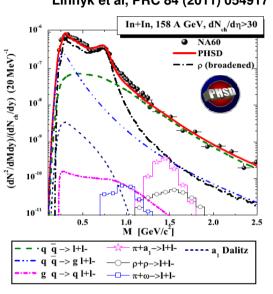
→ Strong enhancement of dilepton yield in A+A vs. NN is reproduced by HSD and IQMD for C+C at 1.0, 2.0 A Gev and Ar+KCl at 1.75 A GeV


Dileptons at SIS (HADES): A+A vs NN

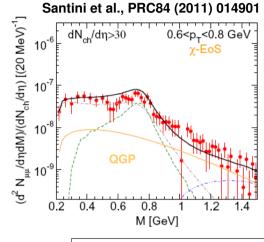
- ☐ Two contributions to the enhancement of dilepton yield in A+A vs. NN
- 1) the pN bremsstrahlung which scales with the number of collisions and not with the number of participants, i.e. pions;
- 2) the multiple \triangle regeneration dilepton emission from intermediate \triangle 's which are part of the reaction cycles $\triangle \rightarrow \pi N$; $\pi N \rightarrow \triangle$ and $NN \rightarrow N\triangle$; $N\Delta \rightarrow NN$
- Enhancement of dilepton yield in A+A
 vs. NN increases with the system size!

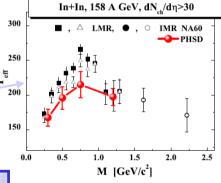

E.B., J. Aichelin, M. Thomere, S. Vogel, and M. Bleicher, PRC 87 (2013) 064907

Dileptons at SIS (HADES): Au+Au



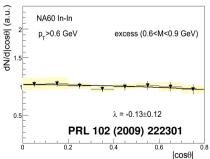
Lessons from SPS: NA60


□ Dilepton invariant mass spectra:

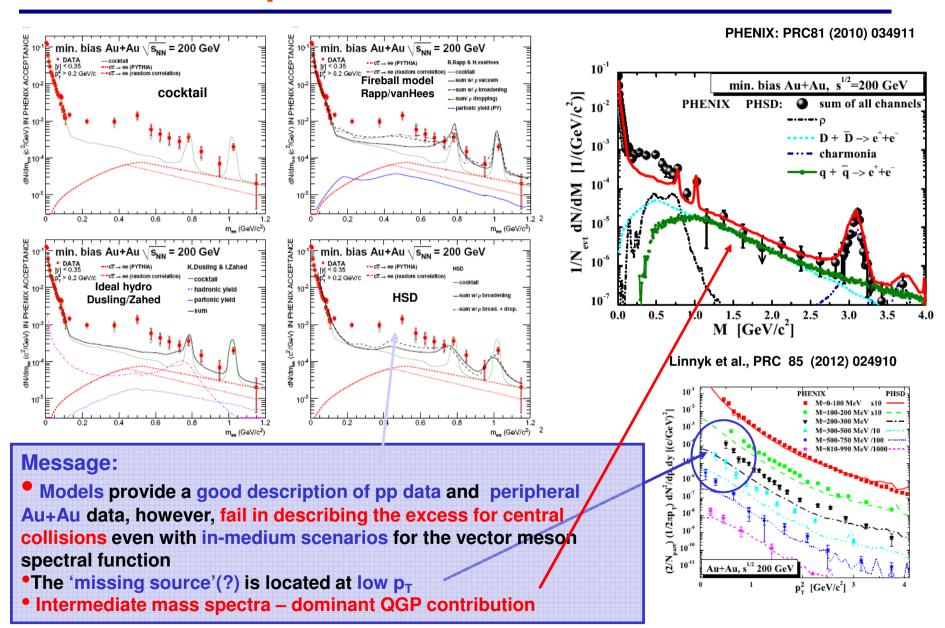


PHSD: Linnyk et al, PRC 84 (2011) 054917

Hvbrid-UrQMD:

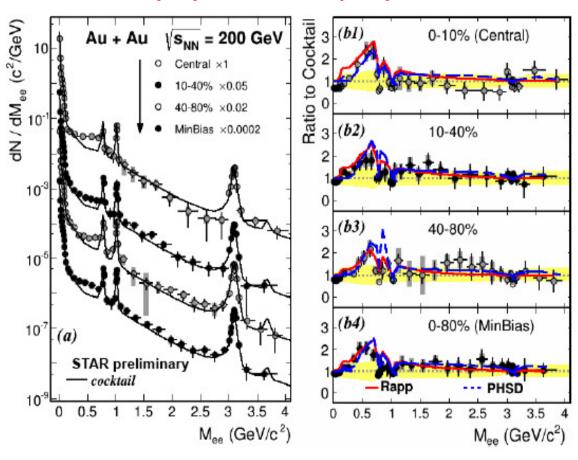


☐ Inverse slope parameter T_{eff}:

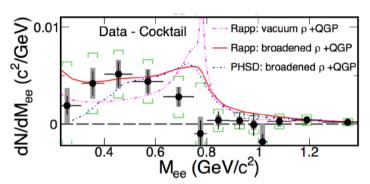

spectrum from QGP is softer than from hadronic phase since the QGP emission occurs dominantly before the collective radial flow has developed

Message from SPS: (based on NA60 and CERES data)

- 1) Low mass spectra evidence for the in-medium broadening of ρ-mesons
- 2) Intermediate mass spectra above 1 GeV dominated by partonic radiation
- 3) The rise and fall of Teff evidence for the thermal QGP radiation
- 4) Isotropic angular distribution indication for a thermal origin of dimuons



Dileptons at RHIC: PHENIX


Dileptons at RHIC: STAR data vs model predictions

Centrality dependence of dilepton yield

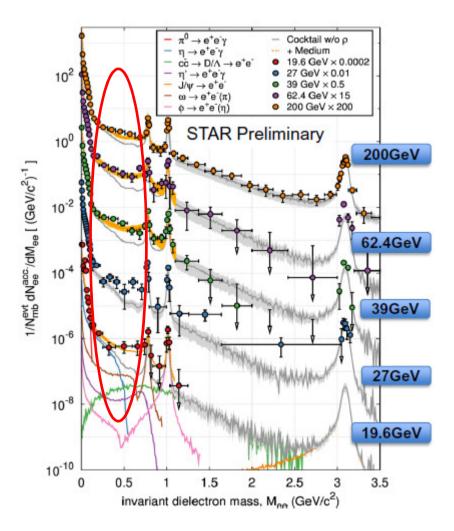
(STAR: arXiv:1407.6788)

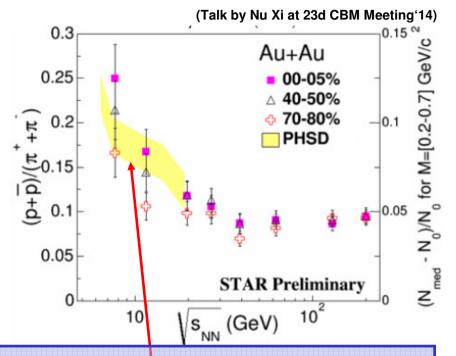
Excess in low mass region, min. bias

Models (predictions):

- Fireball model R. Rapp
- PHSD

Low masses:

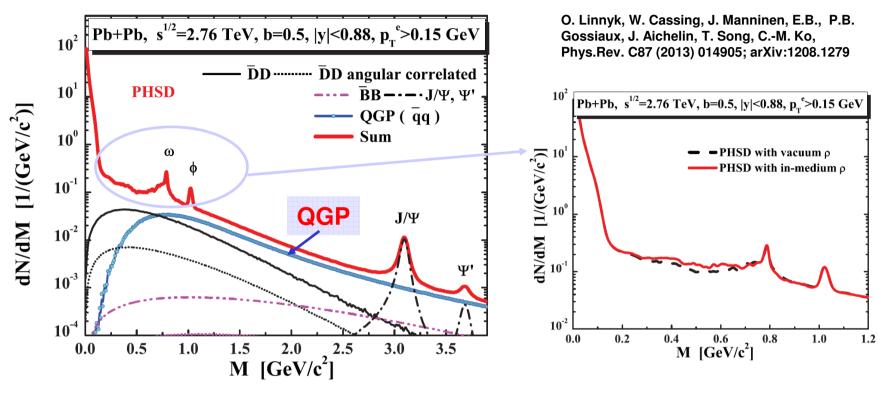

collisional broadening of ρ Intermediate masses:


QGP dominant

Message: STAR data are described by models within a collisional broadening scenario for the vector meson spectral function + QGP

Dileptons from RHIC BES: STAR

(Talk by Nu Xu at QM'2014)



Message:

- BES-STAR data show a constant low mass excess (scaled with $N(\pi^0)$) within the measured energy range
- PHSD model: excess increasing with decreasing energy due to a longer ρ -propagation in the high baryon density phase
- → Good perspectives for future experiments CBM(FAIR) / MPD(NICA)

Dileptons at LHC

Message:

- Iow masses hadronic sources: in-medium effects for ρ mesons are small
- intermediate masses: QGP + D/Dbar
 - charm 'background' is smaller than thermal QGP yield
 - QGP(qbar-q) dominates at M>1.2 GeV → clean signal of QGP at LHC!

Summary

- I. Direct photons the photons produced in the QGP contribute up to 50% to the observed spectrum, but have small v_2
- Large direct photon v_2 comparable to that of hadrons is attributed to the intermediate hadronic bremsstrahlung and hadronic scattering channels not subtracted from the data
- The QGP phase causes the strong elliptic flow of photons indirectly, by enhancing the v_2 of final hadrons due to the partonic interaction in terms of explicit parton collisions and the partonic mean-field potentials
- II. Dilepton spectra according to the PHSD predictions show sizeable changes due to the different in-medium scenarios (as collisional broadening and dropping mass) which can be observed experimentally
- In-medium effects can be observed at all energies from SIS to LHC
- At SPS, RHIC and LHC the QGP (qbar-q) dominates at M>1.2 GeV

FIAS & Frankfurt University
Elena Bratkovskaya
Pierre Moreau
Hamza Berrehrah
Daniel Cabrera
Taesoo Song
Andrej Ilner

Giessen University
Wolfgang Cassing
Olena Linnyk
Volodya Konchakovski
Thorsten Steinert
Alessia Palmese
Eduard Seifert

External Collaborations

JINR, Dubna: Viacheslav Toneev Vadim Voronyuk

BITP, Kiev University: Mark Gorenstein

Barcelona University: Laura Tolos Angel Ramos

Thank you!