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The ‚holy grail‘ of heavy-ion physics:

• Study of the phase 

transition from hadronic to 

partonic matter –

Quark-Gluon-Plasma

• Search for the critical point

• Study of the in-medium properties of hadrons  

at high baryon density and temperature

The phase diagram of QCD

• Search for signatures of 

chiral symmetry restoration?

• Search for the critical point
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Theory: Information from lattice QCD

II. chiral symmetry restoration

with increasing temperature
I. deconfinement phase transition

with increasing temperature +

➔ both transitions occur at about the same temperature TC for low chemical potentials

lQCD BMW collaboration:

0

T
sl,

qq

qq
~Δ

❑ Crossover: hadron gas → QGP

❑ Scalar quark condensate 〈𝒒ഥ𝒒〉 is viewed as an order parameter for the restoration 

of chiral symmetry:

mq=0 
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Experiment: Heavy-ion collisions

❑ Heavy-ion collision experiment
➔ ‚re-creation‘ of the Big Bang conditions in laboratory:

matter at high pressure and temperature

❑ Heavy-ion accelerators:

Relativistic-Heavy-Ion-Collider  -

RHIC (Brookhaven):  

Au+Au up to 21.3 A TeV

Large Hadron Collider -

LHC (CERN):

Pb+Pb up to 574 A TeV

Facility for Antiproton and Ion 

Research – FAIR (Darmstadt) 

(Under construction)      

Au+Au up to 10 (30) A GeV

Nuclotron-based Ion Collider 

fAcility – NICA (Dubna) 

(Under construction) 

Au+Au up to 60 A GeV
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• Multi-strange particle enhancement in A+A 

• Charm suppression

• Collective flow (v1, v2)

• Thermal dileptons

• Jet quenching and angular correlations

• High pT suppression of hadrons

• Nonstatistical event by event fluctuations and correlations 

• ... 

Experiment: measures 

final hadrons and leptons

Signals of the phase transition:

How to learn about 

physics from data?

Compare with theory!
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• Statistical models:

basic assumption: system is described by a (grand) canonical ensemble of 

non-interacting fermions and bosons  in thermal and chemical equilibrium 

= thermal hadron gas at freeze-out with common T and mB

[ - : no dynamical information]

• Hydrodynamical models:

basic assumption:  conservation laws + equation of state (EoS); 

assumption of local thermal and chemical equilibrium 

- Interactions are ‚hidden‘ in properties of the fluid described by transport coefficients

(shear and bulk viscosity h, z, ..), which is ‘input’ for the hydro models

[ - : simplified dynamics]

• Microscopic transport models:

based on transport theory of relativistic quantum many-body systems

- Explicitly account for the interactions of all degrees of freedom (hadrons and partons) 

in terms of cross sections and potentials

- Provide a unique dynamical description of strongly interaction matter 

in- and out-off equilibrium:

- In-equilibrium: transport coefficients are calculated in a box – controled by lQCD

- Nonequilibrium dynamics – controled by HIC

Actual solutions: Monte Carlo simulations 
[+ : full dynamics   |  - : very complicated]

Basic models for heavy-ion collisions
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Models of heavy-ion collisions

transport

hydro

thermal+expansion

thermal model

final
initial
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Dynamical description of heavy-ion collisions

The goal: to study the properties of strongly interacting matter under 

extreme conditions from a microscopic point of view

Realization: dynamical many-body transport approaches

1) Dynamical transport models (nonrelativistic formulation):

from the Schrödinger equation to Vlasov equation of motion ➔ BUU EoM

2) Density-matrix formalism: Correlation dynamics

3) Quantum field theory ➔ Kadanoff-Baym dynamics

➔ generalized off-shell transport equations 

4) Transport models for HIC

This lecture:
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1. From the Schrödinger equation to 

the Vlasov equation of motion
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kinetic term       2-body potential

Hartree-Fock approximation:

•many-body wave function      →

antisym. product of  single-particle wave functions

•many-body Hamiltonian   → single-particle Hartree-Fock Hamiltonian

Quantum mechanical description of the many-body system

Dynamics of heavy-ion collisions is a many-body problem!

Schrödinger equation for the system of N particles in three dimensions:

kinetic term       N-body potential

nonrelativistic 

formulation
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•Hartree term:

self-generated local mean-field potential 

•Fock term:

non-local mean-field exchange potential (quantum statistics)

➔ Equation-of-motion (EoM): propagation of particles in the self-generated mean-field:

Hartree-Fock equation

Time-dependent Hartree-Fock equation for a single particle i:

Single-particle Hartree-Fock Hamiltonian operator:
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Note: TDHF approximation describes only the interactions of particles 

with the time-dependent mean-field !

In order to describe the collisions between the individual(!) particles, one has to go

beyond the mean-field level ! (see Part 2: Correlation dynamics)

We‘ll neglected the exchange (Fock) term 
local potential



Single particle density matrix

❑ Introduce the single particle density matrix:

)t,r()t,r()t,r,r( *

occ






  

Thus, the single-particle Hartree-Fock Hamiltonian operator can be written as

)t,r(U)r(T)t,r,r()t,rr(Vrd)r(T)t,r(h
occ

3 
+=−+=  

 local potential
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)t,r()t,r(h)t,r(
t

i


   =




❑ Consider equation:

(1)

)t,r()t,r(h)t,r()t,r(
t

i)t,r(
** 




  =





)t,r()t,r()t,'r(h)t,r()t,r(
t

i ** 
   =













−

𝜓𝛼
∗ Ԧ𝑟′, 𝑡 ∗(1):

(1)+|𝑓𝑜𝑟 Ԧ𝑟′ ∗ 𝜓𝛼 𝑟, 𝑡 :

(2)

(3)

෍

𝛼

2 − 3 :



Wigner transform of the density matrix

0)t,r,r()t,r(U
m2

)t,r(U
m2

i
)t,r,r(

t

2

r

2
2

r

2

=







−−++













➔EoM:
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  )t,r,r()t,r(h)t,r(h)t,r,r(
t

i −=


 
 

)t,r()t,r()t,r,r( *

o cc






  

),()(

),,(),()(),(
3

trUrT

trrtrrVrdrTtrh





+=

−+=  

kinetic term + potential (local) term

The single-particle Hartree-Fock Hamiltonian:

0)t,x,x()t,x(U
m2

)t,x(U
m2

i
)t,x,x(

t

2

x

2
2

x

2

=







−−++













Rewrite (5) using x instead of r

(4)

(5)



Wigner transform of the density matrix

➔EoM:









−+








−=  t,

2

s
r,

2

s
rsp

i
expsd)t,p,r(f

3












❑ Instead of considering the density matrix , let‘s find the equation of motion 

for its Fourier transform, i.e. the Wigner transform of the density matrix: 

)t,p,r(f


is the single-particle phase-space distribution function 

Density in coordinate space: = )t,p,r(fpd
)2(

1
)t,r( 3

3









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= )t,p,r(frd)t,p(g
3 

Density in momentum space:

0)t,x,x()t,x(U
m2

)t,x(U
m2

i
)t,x,x(

t

2

x

2
2

x

2

=







−−++













xxs,
2

xx
r −=

+
=





xx:old 


New variables:
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Wigner transformation + Taylor expansion

(2)

❑ Make Wigner transformation of eq.(2)

0t,
2

s
r,

2

s
r)t,

2

s
r(U)t,

2

s
r(Usp

i
expsd

i

t,
2

s
r,

2

s
rsp

i
expsd

m2

i

t,
2

s
r,

2

s
r

t
sp

i
expsd

3

2

2

s
r

2

2

s
r

3
2

3

=







−+








−−+








−+









−+








−








−+









−+












−







−+













































sr

2

2

s
r

2

2

s
r

2 






=−

−+
❑ Use that (3)

❑ Consider

)t,r(Us

|Us
2

1
2|Us

2

1

!n

1
|Us

2

1

!n

1

)t,
2

s
r(U)t,

2

s
r(U

r

odd

0s

n

r0s

n

r

0n

0s

n

r

0n

























=








−−








=

−−+

 ==



=

=



=

Make Taylor expansion around r; s→0

terms even in n cancel

Classical limit: keep only the first term n=1

(4)

0
22222222

2

2

2
2

2

2

=−+







−−−+++−+





−+
),,(),(),(),,( t

s
r

s
rt

s
rU

m
t

s
rU

m

i
t

s
r

s
r

t
s

r
s

r

























  (1)
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Vlasov equation-of-motion 

(5)

From (2) and (3),(4)  obtain

0t,
2

s
r,

2

s
r)t,r(Ussp

i
expsd

i

t,
2

s
r,

2

s
r2sp

i
expsd

m2

i
)t,p,r(f

t

r

3

sr

3
2

=







−+








−+









−+








−+



































0)t,p,r(f)t,r(U)t,p,r(f
m

p
)t,p,r(f

t
prr =−+



 




Vlasov equation 

- free propagation of particles in the self-generated HF mean-field potential:

(6)

Eq.(6) is entirely classical (lowest order in s expansion).

Here U is a self-consistent potential associated with f  phase-space distribution: 

),,(),(
)2(

1
),(

33

3
tprftrrpVdrdtrU






−= 

(7)

u
s

in
g

 (
*)









−+








−=  t,

2

s
r,

2

s
rsp

i
expsd)t,p,r(f

3










(*):



Vlasov EoM

Vlasov EoM is equivalent to:

0)t,p,r(fpr
t

0)t,p,r(f
dt

d
pr =







++




==




➔ Classical equations of motion :

)t,r(U
dt

pd
p

m

p

dt

rd
r

r







−==

==

Note: the quantum physics plays a role in the initial conditions for f: 

the initial f in case of fermions must respect the Pauli principle

)t(r:trajectoty


1

2

0)t,p,r(f)t,r(U)t,p,r(f
m

p
)t,p,r(f

t
prr =−+



 




Vlasov equation of motion 

- free propagation of particles in the self-generated HF mean-field potential:
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Dynamical transport models with collisions

add 2-body collisions:

dt  
1

2

3

5

6

4

t



Interaction 1+2→3+4

12V34 coll

d - average distance

In cms:

*

3p


*

4p


*

1p
 *

2p


*

0pppp *

4

*

3

*

2

*

1 =+=+


❑ If the phase-space around              

is essentially empty then the scattering is allowed, 

❑ if the states are filled → Pauli suppression 

= Pauli principle

)p,r()p,r()p,r()p,r( 44332211


→

)p,r(and)p,r( 4433



➔ In order to describe the collisions between the individual(!) particles, one has to 

go beyond the mean-field level ! (See Part 2: Correlation dynamics)
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BUU (VUU) equation

coll

prr
t

f
)t,p,r(f)t,r(U)t,p,r(f

m

p
)t,p,r(f

t
)t,p,r(f

dt

d












=−+











Boltzmann (Vlasov)-Uehling-Uhlenbeck equation (NON-relativistic formulation!)

- free propagation of particles in the self-generated HF mean-field potential

with an on-shell collision term:

)
m2

p

m2

p

m2

p

m2

p
()2()pppp()2(

)4321(wpdpdpd
))2((

1

t

f
I

4

4

3

3

2

2

1

1
4321

33

4

3

3

3

2

3

33

coll

coll




−−+−−+

+→+











 






Collision term for 1+2→3+4 (let‘s consider fermions) :

Transition probability for 1+2→3+4:
qd

d
)4321(w

3

3

12


 +→+

|pp|
m

2112


−=where                                  - relative velocity of the colliding nucleons

Probability including 

Pauli blocking of fermions

qd

d
3

3
- differential cross section,  q – momentum transfer 31 ppq


−=
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BUU: Collision term

P)4321(
d

d
)pppp(||dpdpd

)2(

4
I 4321

3

123

3

2

3

3coll +→+−−+=  








   

   

)f1)(f1(ff)f1)(f1(ff

)t,p,r(f1)t,p,r(f1)t,p,r(f)t,p,r(f

)t,p,r(f1)t,p,r(f1)t,p,r(f)t,p,r(fP

43212143

4321

2143

−−−−−

−−−

−−=




Probability including Pauli blocking of fermions:

Pauli blocking factors

for fermions *

*Note: for bosons – enhancement factor 1+f (where f<<1);

often one neglects bose enhancement for HIC, i.e. 1+f →1

Gain term

3+4→1+2
Loss term

1+2→3+4

LGIcoll −=For particle 1 and 2: 

Collision term = Gain term – Loss term
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Dynamical transport model: collision terms

(20)

❑ BUU eq. for different particles of type i=1,…n

 
n21collii f,...,f,fIf

dt

d
Df =

,...,/J,D,D,...,a,,,K,,,K,K,,:Mesons

;,,,,),...,1535(N),1440(N),1232(,n,p:Baryons:i

1

*

C

*

hh





Drift term=Vlasov eq. collision term

➔ coupled set of BUU equations for different particles of type i=1,…n

 
 

 
...

,...f,f,...,f,f,fIDf

...

,...f,f,...,f,f,fIDf

,...f,f,...,f,f,fIDf

)1440(NNcoll

)1440(NNcoll

)1440(NNcollN







=

=

=
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E.g., Nucleon transport in N,, system : DfN=Icoll

(only 1→2,  2→2 

reactions indicated here)

Full collision term consists of >10000 

different particle combinations

➔ set of transport equations coupled via Icoll and mean field



Dynamical transport model: collision terms

decayproduction

)N(Loss)N(Gain

))p(f1))(p(f1()p(f)ppp(|M|
E

pd

E

pd

)2(

g

))p(f1)(p(f)p(f)ppp(|M|
E

pd

E

pd

)2(

g
Df

NNN

42

N

N

N

33

N,
3

NNN

42

N

N

N

33

N,
3





























→−→=

+−−+−

−−+=









nucleonbydecayby

absorbtionproduction

)N(Loss)N(Gain
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Collision terms for (N,, ) system: N  * Relativistic formulation
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Dynamical transport model: possible interactions

Consider possible interactions for the sytem of (N,R,m),

where N-nucleons, R- resonances, m-mesons

❑ elastic collisions:

RRRR

NRNR

NNNN

→

→

→

❑ inelastic collisions:

mRmR

mNmN

→

→ mmmm →

XBB

...

RRNN

RNNR

NRNN

→







XmB

...

BmmB

RmR

RmN

→







Baryon-baryon (BB): meson-Baryon (mB)          meson-meson (mm)

Baryon-baryon (BB): meson-Baryon (mB)         meson-meson (mm)

Xmm

...

mmmm

m~mm

→





X - multi-particle state

dcba

cba

++

+

Detailed balance:

24



Elementary hadronic interactions

Low energy collisions:

▪ binary 2→2 and

2→3(4)  reactions 

▪ 1→2 : formation and 

decay of baryonic and 

mesonic resonances  

BB → B´B´

BB → B´B´m

mB → m´B´

mB → B´

mm → m´m´

mm → m´ . . .

Baryons: 

B = p, n, (1232), 

N(1440), N(1535), ...

Mesons: 

M = , h, , , , ...

+p

pp

High energy collisions:

(above s1/2~2.5 GeV)

Inclusive particle 

production:

BB→X , mB→X, mm→X

X =many particles

described by 

string formation and decay

(string = excited color 

singlet states q-qq, q-qbar)

using LUND string model

Consider all possible interactions – elastic and inelastic collisions - for the sytem 

of (N,R,m), where N-nucleons, R- resonances, m-mesons, and resonance decays
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US – scalar potential 

(attractive)

Covariant transport equation

From non-relativistic to relativistic formulation of transport equations:

Non-relativistic Schrödinger equation     → relativistic Dirac equation

Non-relativistic dispersion relation: Relativistic dispersion relation:

)r(U
m2

p
E

2 


+=

V

*

S

*

2*2*2*

Upp

Umm

pmE





+=

+=

+=

! Not Lorentz invariant, i.e. 

dependent on the frame

)U,U(U V0


=m

0

*
UEE −=

! Lorentz invariant, i.e. 

independent on the frame

➔ Consider the Dirac equation with local and non-local mean fields:

here

)r,t(y)r,t(x 


3,2,1,0=m

0)x()y,x(Uyd)x()x(U)x()mi(
MD

4MF =−−−   m

m

U(r) – density dependent potential

(with attractive and repulsive parts) vector 4-potential (repulsive)

x x y
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Covariant transport equation

),( rt

x 


mwhere

❑ Covariant relativistic on-shell BUU equation :

from many-body theory by connected Green functions in phase-space + 

mean-field limit for the propagation part (VUU)

}))p,x(f1())p,x(f1()p,x(f)p,x(f

))p,x(f1())p,x(f1()p,x(f)p,x(f{

)(]GG[4d3d2dI

432

243

432

4

4321

4,3,2

coll

−−−

−−

−−+ +→+

+  

( ) ( ) 
collpS

x*

V

x

xS

p*

V

p
I)p,x(f)U(m)U()U(m)U( =++−− m

m



m

m

m



mm 

Gain term

3+4→1+2

Loss term

1+2→3+4

2

2

3

E

pd
2d 

W. Ehehalt, W. Cassing, Nucl. Phys. A 602 (1996) 449

- effective mass

- effective momentum

m*(x,p) = m + Us (x,p)

m (x,p) = pm – Um (x,p)

Us (x,p), Um (x,p) are scalar and vector part of particle self-energies

(m  m  −m*2) – mass-shell constraint
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Brueckner theory

)(]GG[ 432

4

4321  −−++→+

+Transition rate for the process 1+2→3+4 

follows from many-body Brueckner theory:

1) 2-body scattering in vacuum:

Scattering amplitude:

with the hamiltonian:

)E(T
i)2(t)1(tE

1
VV)E(T

h+−−
+=


=

+=
ji

A

1i

)ij(V
2

1
)i(tH

1p
2p

1p 2p

)E(T

1p
2p

1p 2p

)12(V

1p
2p

1p 2p

)12(V

)12(V

3p
3p + ...+

‚ladder‘ resummation
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Brueckner theory

2)  2-body scattering in the medium:

Scattering amplitude → from Brueckner theory:

with single-particle hamiltonian:

)E(G)nn1(
i)2(h)1(hE

1
VV)E(G 33

−−
+−−

+=
h

)1(U)1(t)1(h
MF+=

1p
2p

1p 2p

)E(G

1p
2p

1p 2p

)12(V

1p
2p

1p 2p

)12(V

)12(V

3p
3p + ...+

Pauli-blocking

n3 – occupation number

Note: vacuum case : matrixTmatrixG0nnand)1(t)1(h 33 −→−===

Propagation between scattering V(12) with mean field hamiltonian h(1), h(2)

! only allowed if intermediate states 3,3‘ are not accupied !



• very good description of particle production in pp, pA, pA, AA reactions

• unique description of nuclear dynamics from low (~100 MeV) to 

ultrarelativistic (>20 TeV) energies

Hadron-String-Dynamics – a microscopic 

transport model for heavy-ion reactions
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