Chapter 3: Dynamical Systems

(Ballard: Chapter 5)

Motivation

Natural Processes unfold over time:
- swinging of a pendulum
- decay of radioactive material
- a chemical reaction
- growth of a plant
- formation of a Tornado
- galloping of a horse
- reaching for a cup of tea
- action potential traveling down an axon
- remembering an event

A universal mathematical language for describing processes unfolding in time is dynamical systems theory. An important part of this is the study of differential equations.
Radioactive Decay

Example: Consider a certain amount of radioactive material:

<see applet: http://home.a-city.de/walter.fendt/phe/lawdecay.htm>

The number of atoms that have not decayed yet is a function of time: \(N = N(t) \)

A simple Differential Equation

Let’s treat \(N(t) \) as a continuous function (neglecting the fact that there are discrete atoms decaying). Good approximation if \(N \) is large (typically, you’re dealing with \(10^{23} \) of them).

Then we can speak of the (temporal) derivative of \(N(t) \), i.e. the slope of the \(N(t) \) graph.

different notations:

\[
N'(t) \equiv \frac{dN(t)}{dt} \equiv \dot{N}(t) \equiv \lim_{\Delta t \to 0} \frac{N(t + \Delta t) - N(t)}{\Delta t}
\]

Physics: at any time this derivative is proportional to number of remaining atoms. Expressing this fact mathematically we write:

\[
\dot{N}(t) = -\alpha N(t) \quad \alpha > 0
\]

This is a simple differential equation (DE), relating a function to its derivative!
Review: derivative of functions

\[f(t) = 4t^3 + t^2 - 8t - 7 \quad \Rightarrow \quad f'(t) = df(t)/dt = 12t^2 + 2t - 8 \]

\[g(t) = 4 \sin(t) + 5 \quad \Rightarrow \quad g'(t) = dg(t)/dt = 4 \cos(t) \]

\[h(t) = \exp(ct), \text{ c is constant} \quad \Rightarrow \quad h'(t) = dh(t)/dt = c \exp(ct) \]

Back to radioactive decay

\[\dot{N}(t) = -\alpha N(t) \]

In general: \[\dot{x}(t) = f \left(x(t), t \right) \]

What is the set of functions for which this equation holds? Answering this means to “solve” the differential equation.

Let’s try to guess one or two:

\[N_1(t) = A - Bt \quad : \quad -B = -\alpha (A - Bt) \quad \text{NO!} \]

\[N_2(t) = \exp(-\alpha t) \quad : \quad -\alpha \exp(-\alpha t) = -\alpha \exp(-\alpha t) \quad \text{YES!} \]

But is this the only one? No: \(N(t) = A \exp(-\alpha t) \) with arbitrary \(A \) works too!
Back to radioactive decay

N(t) = A \exp(-\alpha t) is general solution to the DE, \(\dot{N}(t) = -\alpha N(t) \)
there are no others (try finding them)

To also specify the correct A we need more information, e.g. how big is N(t) at time t=0. This is called an initial value problem (IVP).

Assume we know that N(0) = 1000.
How do we have to choose A?

\(\text{Let's compute N}(0): \ N(0) = A \exp(-\alpha t) = A \)

Since N(0) is supposed to be 1000 we need to set A=1000.
Thus: the specific solution to IVP is N(t) = 1000 \exp(-\alpha t)

Example: assume \(\alpha = 1 / 500 \text{years} \). What is N(70 years)?
N(70 years) = 1000 \exp(\ - \ (1 / 500 \text{years}) \times 70 \text{years})
= 1000 \exp(-70/500) \approx 869

Example continued: N(t) = A \exp(-\alpha t) , \(\alpha = 1 / 500 \text{years} \)

Question: What is the time after which N(t) is \(\frac{1}{2} N(0) \) ? (half-life \(T_{1/2} \))

Answer:
when \(\exp(-\alpha T_{1/2}) = \frac{1}{2}, \ i.e. \)

\(T_{1/2} = \ln(1/2)/(-\alpha) \approx 347 \text{ years} \)

To play some more with radioactive decay, visit:
http://www.safety.ubc.ca/rad/calc/calcframe.htm
Graphical Interpretation of DE

\[N(t) = -\alpha N(t) \]

Idea: read this as a prescription of how to choose \(dN(t)/dt \) (the slope of \(N(t) \)) as a function of \(N(t) \).

Solving the DE means to find smooth curves that have these line segments as tangents, there’s one curve for any \(A \).

Second Graphical Interpretation

\[\dot{N}(t) = -\alpha N(t) \]

Idea: read this as a prescription of how \(N(t) \) “moves” as a function of \(N(t) \).

At any time:
- If \(N \) is positive (right side) \(N \) will be shrinking at that time (left arrow).
- If \(N \) is negative (left side) \(N \) will be growing at that time (right arrow) because \(dN/dt \) will be positive. (Negative number of atoms does not make a lot of sense but the equation does not care!)

At \(N=0 \), \(dN/dt=0 \), i.e. \(N \) does not change at all: _fixed point_
Another simple example

Consider a rocket being accelerated by a constant force. According to physical laws this situation is described by the following simple differential equation:

\[
dv(t)/dt = -g + F/m
\]

where \(v(t)\) is the velocity of the rocket, \(m\) is its mass, \(g\) is the acceleration due to gravity \((g \approx 9.81 \text{ m/s}^2)\) and \(F\) is the force the engine generates.

To find a solution \(v(t)\) we have to find a function whose derivative is \(-g + F/m\).

Answer: the solutions are \(v(t) = (-g+F/m)t + v_0\), where \(v_0\) is an arbitrary initial velocity.

Let’s verify

DE: \(dv(t)/dt = -g + F/m\)

proposed solution: \(v(t) = (-g+F/m)t + v_0\)

Verify : compute the derivative of the proposed \(v(t)\) and see if DE holds

\[
dv(t)/dt = -g + F/m \quad \text{O.k., works!}
\]

Side question: How big does the force of the rocket have to be to assure lift-off? \(F > mg\)

Recall the \(N(t)\) picture for radioactive decay. What does the picture look like in the rocket case?
Differential Equations

In general: \(x(t) = f(x(t), t) \)

Problem: can be very tough or even impossible to solve analytically

Three Approaches:

- **numerical simulation:** generate approximate solutions with computer
- **local stability analysis:** study fixed points and surrounding areas
- **global stability analysis:** look for an "energy" function governing global behavior

Next time: all this for vectors

Approximate Numerical Solution

Note: not covered in Ballard’s book!

\[\dot{x}(t) = f(x(t), t) \]

Idea: approximate derivative with finite ratio: \(\dot{x}(t) \approx \frac{x(t + \Delta t) - x(t)}{\Delta t} \)

Thus: \(\frac{x(t + \Delta t) - x(t)}{\Delta t} \approx f(x(t), t) \)

Now solve for \(x(t + \Delta t) \): \(x(t + \Delta t) = x(t) + f(x(t), t)\Delta t \)

Given an initial condition \(x(0) \) we can select a “suitable” \(\Delta t \) and compute \(x(t + n\Delta t) \) in an iterative manner, \(n=1,2,3,... \)

This is the so-called **Euler method.**
Graphical Interpretation of Euler method

\[x(t + \Delta t) = x(t) + f(x(t), t)\Delta t \]

Idea: extrapolate tangents to \(x(t) \) for finite distance

\[x(t) \]

true \(x(t_0 + \Delta t) \)

error

estimated \(x(t_0 + \Delta t) \)

t

- **Example:** \(\dot{N}(t) = -\alpha N(t), \quad \alpha > 0 \)

Prescription: \(x(t + \Delta t) = x(t) + f(x(t), t)\Delta t \)

\[\Rightarrow N(t + \Delta t) = N(t) - \alpha N(t)\Delta t = N(t)(1 - \alpha \Delta t) \]

Notes:

The right choice of \(\Delta t \) is problematic:
- if \(\Delta t \) too small, simulations take too long
- if \(\Delta t \) too big, simulations can be grossly incorrect
- good heuristic is to halve \(\Delta t \) and see if result remains the same

- Many other methods, Euler method is just the simplest
Excursion:
Taylor expansion / Taylor series

Idea: locally approximate an arbitrary function by a polynomial

\[f(x_0 + \xi) \approx f(x_0) + \frac{1}{1!} f'(x_0)\xi + \frac{1}{2!} f''(x_0)\xi^2 + \cdots \]

Example: approximate around \(x=0 \)

\[f(x) = \sin(x) \]

\[\sin(x) = 0 + x + 0 - \frac{x^3}{3!} + 0 + \cdots \]

Frequently, only the first 2 terms used: linearization,

\[\text{e.g. } \sin(x) \approx x \text{ is the linearization of } \sin(x) \text{ around } x=0 \]

Question: How good is approximation?

Answer: The better the more terms

But: for very small \(\xi \), linear term dominates because \(\xi \gg \xi^2 \gg \xi^3 \)
Local Stability Analysis

Idea: Finding solution to DE sometimes very difficult. Stability analysis gets some qualitative insight into behavior more easily.

Consider the logistic DE used to describe population dynamics species:

\[\dot{x} = (\alpha - 1)x - \alpha x^2, \alpha > 1 \]

\((\alpha-1)x\): growth through reproduction; \(-\alpha x^2\): death due to overcrowding

Step 1: find stationary points, points where \(dx/dt=0\)

In the example:

\[0 = (\alpha - 1)x - \alpha x^2 \]

has the 2 solutions: \(x_1 = 0; x_2 = (\alpha - 1)/\alpha\)

Kinds of Stationary Points

Stationary point: \(dx/dt=0\)

What happens if system in stationary state gets a small "nudge"

- system returns to stationary point: point is stable (asymptotically stable)
- system runs away from stationary point: point is unstable
- system rests at neighboring point: marginally stable
- saddle point: direction of small nudge matters
logistic DE: \(\dot{x} = (\alpha - 1)x - \alpha x^2, \alpha > 1 \)

Step 2: linearize the DE around the stationary points and analyze the stability of the stationary points

First point: \(x_1 = 0 \)

\[x = x_1 + \xi \Rightarrow \dot{x} = \dot{\xi} \]

\(\xi \) is small deviation from stationary point \(x_1 \)

\[\dot{\xi} = (\alpha - 1)\xi - \alpha \xi^2 \]

linearization

\[\dot{\xi} = (\alpha - 1)\xi \]

This is linear DE for small deviation \(\xi \), telling us whether small deviation is going to grow or decay:

- growth: *unstable fixed point*
- decay: *stable fixed point*

The general solution to the linearized DE is

\[\xi(t) = \xi(0) \exp((\alpha - 1)t) \]

\[\lim_{t \to \infty} \xi(t) = \pm \infty \]

In this case we find growth, since \((\alpha - 1) > 0\), i.e. \(x_1 \) is unstable

Second point: \(x_2 = \frac{\alpha - 1}{\alpha} \)

\[x = x_2 + \xi \Rightarrow \dot{x} = \dot{\xi} \]

Rewriting the DE in \(\xi \):

\[\dot{\xi} = (\alpha - 1)\left(\xi + \frac{\alpha - 1}{\alpha}\right) - \alpha\left(\xi + \frac{\alpha - 1}{\alpha}\right)^2 \]

Simplifying using Taylor expansion:

\[\dot{\xi} \approx (1 - \alpha)\xi \]

This corresponds to exponential decay since \((1 - \alpha) < 0\), i.e. \(x_2 \) is a stable fixed point