Chapter 2: Evaluative Feedback

- **Evaluating** actions vs. **instructing** by giving correct actions
- Pure evaluative feedback depends totally on the action taken. Pure instructive feedback depends not at all on the action taken.
- Supervised learning is instructive; optimization is evaluative
- **Associative vs. Nonassociative:**
 - Associative: inputs mapped to outputs; learn the best output for each input
 - Nonassociative: “learn” (find) one best output
- \(n \)-armed bandit (at least how we treat it) is:
 - Nonassociative
 - Evaluative feedback
The \(n \)-Armed Bandit Problem

- Choose repeatedly from one of \(n \) actions; each choice is called a **play**
- After each play \(a_t \), you get a reward \(r_t \), where

\[
E \{ r_t \mid a_t \} = Q^*(a_t)
\]

These are unknown **action values**
Distribution of \(r_t \) depends only on \(a_t \)

- Objective is to maximize the reward in the long term, e.g., over 1000 plays

To solve the \(n \)-armed bandit problem, you must **explore** a variety of actions and **exploit** the best of them
The Exploration/Exploitation Dilemma

- Suppose you form estimates

\[Q_t(a) \approx Q^*(a) \]

Action value estimates

- The greedy action at \(t \) is \(a_t \)

\[a_t^* = \arg\max_a Q_t(a) \]

- \(a_t = a_t^* \Rightarrow \) exploitation

- \(a_t \neq a_t^* \Rightarrow \) exploration

- You can’t exploit all the time; you can’t explore all the time

- You can never stop exploring; but you should always reduce exploring. Maybe.
Methods that adapt action-value estimates and nothing else, e.g.: suppose by the t-th play, action a had been chosen k_a times, producing rewards $r_1, r_2, \ldots, r_{k_a}$, then

$$Q_t(a) = \frac{r_1 + r_2 + \cdots + r_{k_a}}{k_a}$$

"sample average"

$$\lim_{k_a \to \infty} Q_t(a) = Q^*(a)$$
ε-Greedy Action Selection

- Greedy action selection:
 \[a_t = a^*_t = \arg \max_a Q_t(a) \]

- ε-Greedy:
 \[a_t = \begin{cases}
 a^*_t & \text{with probability } 1 - \varepsilon \\
 \text{random action with probability } \varepsilon
\end{cases} \]

... the simplest way to balance exploration and exploitation
10-Armed Testbed

- $n = 10$ possible actions
- Each $Q^*(a)$ is chosen randomly from a normal distrib.: $\eta(0, 1)$
- Each r_t is also normal: $\eta(Q^*(a_t), 1)$
- 1000 plays
- Repeat the whole thing 2000 times and average the results
ε-Greedy Methods on the 10-Armed Testbed
Softmax Action Selection

- Softmax action selection methods grade action probs. by estimated values.
- The most common softmax uses a Gibbs, or Boltzmann, distribution:

Choose action a on play t with probability

$$
\frac{e^{Q_t(a)/\tau}}{\sum_{b=1}^{n} e^{Q_t(b)/\tau}}
$$

where τ is the

“computational temperature”
Incremental Implementation

Recall the sample average estimation method:

The average of the first k rewards is (dropping the dependence on a):

$$Q_k = \frac{r_1 + r_2 + \cdots + r_k}{k}$$

Can we do this incrementally (without storing all the rewards)?

We could keep a running sum and count, or, equivalently:

$$Q_{k+1} = Q_k + \frac{1}{k+1} [r_{k+1} - Q_k]$$

This is a common form for update rules:

$$NewEstimate = OldEstimate + StepSize[Target - OldEstimate]$$
Tracking a Nonstationary Problem

Choosing Q_k to be a sample average is appropriate in a stationary problem,
i.e., when none of the $Q^*(a)$ change over time,

But not in a nonstationary problem.

Better in the nonstationary case is:

$$Q_{k+1} = Q_k + \alpha [r_{k+1} - Q_k]$$

for constant α, $0 < \alpha \leq 1$

$$= (1 - \alpha)^k Q_0 + \sum_{i=1}^{k} \alpha (1 - \alpha)^{k-i} r_i$$

exponential, recency-weighted average
Optimistic Initial Values

- All methods so far depend on $Q_0(a)$, i.e., they are biased.
- Suppose instead we initialize the action values optimistically, i.e., on the 10-armed testbed, use $Q_0(a) = 5$ for all a.

![Graph showing percentage of optimal action over plays for optimistic and realistic settings.](image)
Conclusions

- These are all very simple methods
 - but they are complicated enough—we will build on them
 - we should understand them completely
Conclusions

- These are all very simple methods
 - but they are complicated enough—we will build on them
 - we should understand them completely

- Ideas for improvements:
 - estimating uncertainties . . . interval estimation
 - “action elimination” methods
 - approximating Bayes optimal solutions
 - Gittens indices
Reinforcement Comparison

- instead of estimating action values we introduce *action preferences* $p_t(a)$ that control actions via a softmax action selection.

- we also maintain an estimate of the average reward we are obtaining r_{ave}

- idea: increase action preference for actions which lead to a reward that is higher than average

- problem becomes non-stationary because average reward changes as we change our policy