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Transport model

Heavy lons Collisions

Time

Mixed Phase

Quark-Gluon
Plasma

Pre-equilibrium
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Transport model

Numerical steps for a simulation

Simulation = computer
N8
Discretization of time
steps and processes
N8
Each step must be carefully
taken into account !

Initialization

\

v .
time
v loop

f
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Transport model

Initial conditions

Simulations similar to RHIC conditions :

Parameters of the simulations

o A =208 nucleons, S 250
[]

Vsnun = 200 GeV/N, 2 s
-

o b variable,

S8 Tols SO0 o oSO, 00 05 10 15 20

o t =20 fm/c. r/r

Phase space is saturated by partons : no big fluctuations.
The plasma is assumed to reach the local equilibrium
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Transport model

Initial conditions
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Transport model

Relativistic Dynamics

Relativistic equations of motion

={q}", Z}p =2)ip}'
oV,
={pf'"Z}p = :

( coll. )

q"

Relativistic particles in the Minkowski phase space (g*, p*)
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Transport model

Relativistic Dynamics

@ T : invariant time

Relativistic equations of motion '
evolution parameter,

oqf' _ (g, Z}p =22 pt o {-,-}p : Dirac bracket,
or " !

opt " OV @ Z : system with

i ot 2 =S Aotk 4 (ol )

ot {e', 210 Xk: kaq;‘ (eoll.) constraints,

o ) : relativistic factor.

Relativistic particles in the Minkowski phase space (g*, p*)
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Transport model

Relativistic Dynamics

8N — 6N dimensions : 2N constraints ¢
to fix the times and the energies of the IV particles.
For this constrained dynamics we use :

Dirac bracket :

{37 b}D = {aa b} - {aa ¢i}Cij{¢j7 b}

. . . 1
with the matrix of constraint C;~ = {9i, 0}

(Dirac, Lectures on Quantum Mechanics (1964))
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Transport model

Relativistic Dynamics

Z is a quantity related to the evolution parameter 7.
It is related to the energy conservation and the causality :

zZ= Zk Ak Pk

using the relativistic factor A, which
can be calculated from the Dirac bracket :

M = Cron

Now : masses ? cross sections ?
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Transport model

Nambu-Jona-Lasinio model

NJL Lagrangian for SU(3) :

L=+ L+ %

2L = qr (i9 — mof) ar
(kinetic term, break explicitly chiral sym.)

8

Ly =Gsy {(‘7f>\a<7f)2 4 (af"’Y5>\a‘7f)2]
a=0
8

+ 6y [(6fw)\"qf)2 + (6fi7w/5/\aqf)2]
a=0

(4-fermions term, respect chiral sym.)
ZLe = K[detgr (1 + 75) gr + detgr (1 — vs5) gr]
(’t Hooft term, Ux(1) anomaly)

o Same symmetries than QCD ...
@ ...but no gluons for confinement,
o A model for g and g ...

o ...but which can describe hadrons.
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Transport model

NJ

Quark masses :

L masses for transport

Starting from interactions contained in the Lagrangian :

we can get the

o >G<< EKE

effective masses of quarks in a mean field :

Uﬂ/’:)) <<w_11‘/}]>>

O,

m;

mo;
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Transport model

NJL masses for transport

Quark masses :

Starting from interactions contained in the Lagrangian :
mo  G(¢d)  K(p9)®

we can get the effective masses of quarks in a mean field :

M; = mo; — 2G{{thiyi)) + K (D)) ({(htbuc))
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Transport model

NJL masses for transport

Meson masses :

Starting from the bound state description (Random Phase Ap-
proximation or Lippmann-Schwinger equation) :

OwOmO:::
I I

we can extract the meson masses as poles of the propagator :

PO O
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Transport model

NJL masses for transport

Meson masses :

Starting from the bound state description (Random Phase Ap-
proximation or Lippmann-Schwinger equation) :

N(k?) = =i Ne Tr [ (TS(p + k/2)TS(p = k/2)) (55
we can extract the meson masses as poles of the propagator :

det(1 — G,MN(k?)) = k? — m2
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Transport model

NJL masses for transport

Mass of u quark (MeV) Mass of s quark (MeV)
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Transport model

NJL cross sections for transport

e 0D ed Tron SH A

D d
Lagrangian and contain the following processes :
7 ——
\\ >=§=< —

943—4qq qg—MM

NN/

We have an explosion of the cross sections close
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sqri(s) -
Thres. (MeV)

o

sart(s) -
Thres. (MeV)
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Transport model

NJL + RQMD = Phase Transition

Mass of s quark (MeV)

t
ot
dr E;
dpf' N 1 9V -
d_7i = — k=1 7E; Ba;, +(collisions)
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Hadronization problem

Outline

How does the hadronization take place ?
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Hadronization problem

Local phase transition

Lattice QCD cannot be extended
to describe the dynamical phase

transition but a microscopic
NJL+RQMD approach can do it.

Chiral phase transition and big
cross sections are supposed to be
enough to hadronize the plasma

even without confinement.
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Hadronization problem

Local phase transition

= < )
8 Universe é . o (éé
oo
5@
E
) o o o
= A ® Quark-Gluon

\ Plasma
1

@ s % D
N Superconductor
AN . @ D e
Vacuum ‘ ! Compact|Stars
0 Nuclei Baryon Density
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Hadronization problem

Local equilibrium

We use equations of motion for each particle in the plasma.
Assuming a local equilibrium we can define a (T, i) for each
particle. In the NJL model the mass plays the role of a potential :

avk 8m —2m (8mk aTk 8mk 8/,Lk)
= amy

=2m
94i, " qi, 0Tk g, Ouk 9qiy,

ip
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Hadronization problem

Local equilibrium

Local densities :

Ar,-?
Rj =exp | — 2

we define
PF; = Z Rij
i#j
poi = 3 Ry Sign()
i#j
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Hadronization problem

Local equilibrium

Local densities : Local potentials :
Thermodynamics gives :
R ( Ar§>
j=€Xp | — 2\ 1/3
L2
T =(he)or ) ()
we define €
(for p =~ 0)
PF; :ZRU 62 1/3
i#i pi =(hc)(ps;)'"? (?)
§= R;; Sign(j
pe %J: s Sign(j) (for T ~ 0)
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Hadronization problem

Collisions and decays

(T2,12,m3) © RETTELA O (T ,p2"my’)

O (Tq,11,my)
(T..M)

® (T2lu2vm2)
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Hadronization problem

Collisions and decays

Among all the possible NJL cross
sections we include in our simulations :

©gqg—4qaq,
©q9qg—4qq,
e qgqg— MM,
o M —qq,

with scalar and pseudoscalar mesons. We finally use a fully
microscopic n-body theory to describe the phase transition.
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Microscopic approach

Outline

Why Why is a microscopic approach so interesting ?
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Microscopic approach

Cross-over

Let's have a look at the microscopic scale. We can trace each
particle and record collisions and decays as a function of time,
energy, temperature and so on.

Here is an example for b = 6.5 fm : the elastic and inelastic
collisions, and the decay compared to the freeze-out surface
coming from an hydrodynamical simulation with
the same initial conditions (but b =0 fm) :
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Microscopic approach

Cross-over

t (fm/c) t (fm/c)

< [fm]

0 ! 2 3 4 10 5 0 S - 10
t (fm/c)
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Microscopic approach

Cross-over

= ——
2500 B ’/ mesons
o 2000 £ 1000 T=1.7 TC g
o — ud E
; 1500 —s s e=0
K = 500 _
T 1000 [ = 7 B+ B
_, ,
500 — Total !5 - -l glu0n§ eI T T e -
o = e Ty —
0 5 20 0 2 10 12

10 15 4 6
t (fm/c) time [fm/c]

Multiplicity as a function of time for us and for PHSD.
Cassing, Phys. Rev. C78 (2008
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Microscopic approach

Effects of initial conditions

OF y
particles m
# collisions Xy
. T v
Elliptic flow :

== () -()")

Simulation of a QGP
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Microscopic approach

Effects of initial conditions

—CGC
- Glauber

6 8 012
b (fm)

——CGC , hydro+cascade
Glauber , hydro+cascade
042 PHOBOS (hit, track)

0.1 0%
00

V2

50 100 150 200 250 300 350 4¢
Noart
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Microscopic approach

Effects of initial conditions

04 TTT[TTTT[TITTIT[TITTIr[IITg

0.3 < VJIEP) T

o 035 | m VZ[RP] =

03 | @ PHOBOS 3

© 02 S ° 025 - 3
00 90 E o

=~ < 02 f % { . 3
o S E 1fals E
0.1 015 % % -

01 =

O smuations . oyen E AutAu ) 3

/14 005 F= /sy = 200 GeV E

0'00 2 4 6 8 10 12 14 00 :||||||\||||\||||||||||||||||||||\|||||F

o

50 100 150 200 250 300 350 400

b (fm) Npart

vo/€ as a function of b or Np,: as compared to data
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vz (%)

Microscopic approach

Effects of initial conditions

o o2 i
8 w ___________

;W % W - baryons
6 |° ‘

S Y T
. o PR mesons i
2
° 5 10 15 20 ! L : y L

0 2 4 6 8 0 12 14
t (fm/c) time [fm/c]

Formation of the v» as a function of time for
similar event conditions in our approach and in PHSD.
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Conclusion

Conclusion

It is possible to use a transport theory based on an effective
model with local interactions and local equilibrium in order to
reproduce the main properties of the quark gluon plasma.

The role of the confinement in the phase transition was not so
clear but now it is possible to say that we can describe the
mechanism of hadronization without this one.

A secondary conclusion is that it is possible to describe a fully
relativistic strongly interacting system within a code which
perfectly conserves the energy.
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Conclusion

Outlook

Implement another improvement of the NJL model : the PNJL
model (with Polyakov loop) which includes approximatively the
confinement of color,

Add new particles like vector mesons, baryons (to be able to
compare results to experimental data), and new processes,

Try to solve the problem of the few final free quarks ...
...and use different initial conditions (?),

Improve the source code allowing to simulate bigger system (use
parallelism on modern computer — OpenCL),

Extension to a true event generator which can predict observables.
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NJL equation of state

—— NJLp:0—
B e NJLp 0 A
12 o lattice QCD
10
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NJL masses
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Backup slides

Checking local equilibrium

1.0 pommmmmmm e — ===

ratio

0.5

0.0
140 160 180 200 220 240 260 280 300

TO (MeV)

Rudy Marty Simulation of a QGP



Backup slides

Energy conservation

0.025

0.0

E/Ey-1 (%)

-0.025
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Backup slides

Running time

3000 12000
— 0.0208((14 — x)*° — 32.5((14 — 2)*
2400 < ) 10000 o initiaa(l( o
— 32.5((14 — 2)?)
- 8000
5 1800
o 3 6000
< 1200
- 4000
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Backup slides

Relativistic collisions
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Backup slides

Results
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d

5

1/ 27pr.dN / dpt

2
PT

=

Backup slides

Results

107
0

600 900 1200 1500
pr (MeV)

300

(1/2m) dN/dy pr dpt

10000
1000
100

0.01

PHENIX 7
PHENIX K2
PHENIX /10
T

K72
B0

1833

05 1 15 2
pr [GeV]

as a function of pt as compared to data (6 < b < 8 fm).
(Schenke, Phys. Rev. C82 (2010))

Rudy Marty

Simulation of a QGP




Backup slides

Results
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Backup slides

Resul
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