

The Nanbu-Jona-Lasinio model in a Relativistic Quantum Molecular Dynamics from medium properties to Heavy Ions Collisions

Rudy Marty

June 24° 2012 in collaboration with J. Aichelin

special thanks to E. Bratkovskaya

Rudy Marty

Simulation of a QGP

Heavy Ions Collisions

Numerical steps for a simulation

Simulation = computer ↓ Discretization of time steps and processes ↓ Each step must be carefully taken into account !

Initial conditions

Simulations similar to RHIC conditions :

• t = 20 fm/c.

Phase space is **saturated** by partons : no big fluctuations. The plasma is assumed to reach the **local equilibrium** before the simulations start.

Initial conditions

Rudy Marty

Relativistic Dynamics

Relativistic particles in the **Minkowski phase space** (q^{μ}, p^{μ}) but classical phase space for dynamics (\vec{q}, \vec{p}) !

Rudy Marty

Relativistic Dynamics

Relativistic equations of motion

$$\begin{aligned} \frac{\partial q_i^{\mu}}{\partial \tau} &= \{q_i^{\mu}, \mathcal{Z}\}_D = 2\lambda_i p_i^{\mu} \\ \frac{\partial p_i^{\mu}}{\partial \tau} &= \{p_i^{\mu}, \mathcal{Z}\}_D = \sum_k \lambda_k \frac{\partial V_k}{\partial q_i^{\mu}} + \langle \text{ coll. } \rangle \end{aligned}$$

- *τ* : invariant time evolution parameter,
- $\{\cdot, \cdot\}_{D}$: Dirac bracket,
- Z : system with constraints,
- λ : relativistic factor.

Relativistic particles in the **Minkowski phase space** (q^{μ}, p^{μ}) but classical phase space for dynamics (\vec{q}, \vec{p}) !

Relativistic Dynamics

 $8N \rightarrow 6N$ dimensions : 2N constraints ϕ_k to fix the times and the energies of the N particles. For this constrained dynamics we use :

Dirac bracket :

$$\{a, b\}_D = \{a, b\} - \{a, \phi_i\} C_{ij} \{\phi_j, b\}$$

with the matrix of constraint $C_{ii}^{-1} = \{\phi_i, \phi_j\}.$

(Dirac, Lectures on Quantum Mechanics (1964))

Relativistic Dynamics

 \mathcal{Z} is a quantity related to the evolution parameter τ . It is related to the energy conservation and the causality :

 $\mathcal{Z} = \sum_k \lambda_k \phi_k$

using the relativistic factor $\lambda,$ which can be calculated from the Dirac bracket :

$$\lambda_k = C_{k2N}$$

Now : masses ? cross sections ?

Simulation of a QGP

Nambu-Jona-Lasinio model

NJL Lagrangian for SU(3) :

$$\mathscr{L}_{NJL} = \mathscr{L}_2 + \mathscr{L}_4 + \mathscr{L}_6$$

$$\begin{split} \mathscr{L}_2 &= \bar{q}_f \left(i \not \! \partial - m_{0f} \right) q_f \\ (\text{kinetic term, break explicitly chiral sym.}) \end{split}$$

$$\begin{aligned} \mathscr{L}_{4} &= G_{5} \sum_{a=0}^{8} \left[\left(\bar{q}_{f} \lambda^{a} q_{f} \right)^{2} + \left(\bar{q}_{f} i \gamma_{5} \lambda^{a} q_{f} \right)^{2} \right] \\ &+ G_{V} \sum_{a=0}^{8} \left[\left(\bar{q}_{f} \gamma_{\mu} \lambda^{a} q_{f} \right)^{2} + \left(\bar{q}_{f} i \gamma_{\mu} \gamma_{5} \lambda^{a} q_{f} \right)^{2} \end{aligned}$$

(4-fermions term, respect chiral sym.) $\mathscr{L}_6 = K \left[\det \bar{q}_f (1 + \gamma_5) q_f + \det \bar{q}_f (1 - \gamma_5) q_f \right]$ ('t Hooft term, $U_A(1)$ anomaly)

- Same symmetries than QCD
- ... but no gluons for confinement,
- A model for q and \bar{q} ...
- ... but which can describe hadrons.

(Klevansky, Rev. Mod. Phys. 64(1992))

Rudy Marty

Simulation of a QGP

NJL masses for transport

Starting from interactions contained in the Lagrangian :

we can get the effective masses of quarks in a $\ensuremath{\textit{mean}}$ field :

NJL masses for transport

Quark masses :

Starting from interactions contained in the Lagrangian :

$$m_0 \qquad G(\phi \bar{\phi})^2 \qquad K(\phi \bar{\phi})^3$$

we can get the effective masses of quarks in a $\ensuremath{\textit{mean}}$ field :

$$M_{i} = m_{0i} - 2G\langle\langle\bar{\psi}_{i}\psi_{i}\rangle\rangle + K\langle\langle\bar{\psi}_{j}\psi_{j}\rangle\rangle\langle\langle\bar{\psi}_{k}\psi_{k}\rangle\rangle$$

Rudy Marty

NJL masses for transport

Meson masses :

Starting from the **bound state** description (Random Phase Approximation or Lippmann-Schwinger equation) :

we can extract the meson masses as poles of the propagator :

NJL masses for transport

Meson masses :

Starting from the **bound state** description (Random Phase Approximation or Lippmann-Schwinger equation) :

$$\Pi(k^2) = -i N_c \operatorname{Tr} \int \left(\Gamma S(p + k/2) \Gamma S(p - k/2) \right) \frac{\mathrm{d}^4 p}{(2\pi)^4}$$

we can extract the meson masses as poles of the propagator :

$$\det(1-G_{\pi}\Pi(k^2))=k^2-m_{ar{q}q}^2$$

NJL masses for transport

Rudy Marty

Simulation of a QGP

NJL cross sections for transport

The NJL cross sections can be obtained from the NJL Lagrangian and contain the following processes :

 $q \; \bar{q}
ightarrow q \; \bar{q}$

 $q \; \bar{q} \to M \; M$

We have an explosion of the cross sections close to the critical temperature $(m_q + m_{q'} = m_M)$ and close to the threshold $(\sqrt{s} = m_M + m_{M'})$.

Rudy Marty

Simulation of a QGP

NJL cross sections for transport

Rudy Marty

Simulation of a QGP

NJL + RQMD = Phase Transition

Finally, choosing the nuclei collision frame gives us these simple final equations of motion.

Rudy Marty

Simulation of a QGP

Outline

How does the hadronization take place ?

Rudy Marty

Simulation of a QGP

Local phase transition

Lattice QCD cannot be extended to describe the **dynamical phase transition** but a microscopic NJL+RQMD approach can do it.

Chiral phase transition and big cross sections are supposed to be enough to hadronize the plasma even without confinement.

Local phase transition

We must use local (T, μ) with the NJL model for hadronization.

Local equilibrium

We use equations of motion for **each particle** in the plasma. Assuming a **local equilibrium** we can define a (T, μ) for each particle. In the NJL model the mass plays the role of a potential :

$$\frac{\partial V_k}{\partial q_{i\mu}} = 2m_k \frac{\partial m_k}{\partial q_{i\mu}} = 2m_k \left(\frac{\partial m_k}{\partial T_k} \frac{\partial T_k}{\partial q_{i\mu}} + \frac{\partial m_k}{\partial \mu_k} \frac{\partial \mu_k}{\partial q_{i\mu}} \right)$$

Local equilibrium

Local densities :

$$R_{ij} = \exp\left(-\frac{\Delta r_{ij}^2}{L^2}\right)$$

we define

$$\rho_{F_i} = \sum_{i \neq j} R_{ij}$$
$$\rho_{B_i} = \sum_{i \neq j} R_{ij} \operatorname{Sign}(j)$$

Local equilibrium

Local densities :

$$R_{ij} = \exp\left(-\frac{\Delta r_{ij}^2}{L^2}\right)$$

we *define*

$$\rho_{F_i} = \sum_{i \neq j} R_{ij}$$
$$\rho_{B_i} = \sum_{i \neq j} R_{ij} \operatorname{Sign}(j)$$

Local potentials :

Thermodynamics gives :

$$T_{i} = (\hbar c) (\rho_{F_{i}})^{1/3} \left(\frac{\pi^{2}}{g}\right)^{1/3} (\text{for } \mu \approx 0)$$
$$\mu_{i} = (\hbar c) (\rho_{B_{i}})^{1/3} \left(\frac{6\pi^{2}}{g}\right)^{1/3} (\text{for } T \approx 0)$$

Collisions and decays

Again, local (T, μ) are used for our microscopic processes

We also use an adaptative mean free path ($\propto \sigma^{-1}$) to set an adaptative time step $\Delta \tau$.

Rudy Marty

Simulation of a QGP

Collisions and decays

Among all the possible NJL cross sections we include in our simulations :

• $q \ q \rightarrow q \ q$, • $q \ \bar{q} \rightarrow q \ \bar{q}$, • $q \ \bar{q} \rightarrow q \ \bar{q}$, • $q \ \bar{q} \rightarrow M \ M$, • $M \rightarrow q \ \bar{q}$,

with scalar and pseudoscalar mesons. We finally use a **fully microscopic n-body theory** to describe the phase transition.

Outline

Rudy Marty

Simulation of a QGP

Let's have a look at the microscopic scale. We can trace each particle and record collisions and decays as a function of time, energy, temperature and so on.

Here is an example for b = 6.5 fm : the elastic and inelastic collisions, and the decay **compared to the freeze-out surface** coming from an hydrodynamical simulation with the same initial conditions (but b = 0 fm) :

Cross-over

Rudy Marty

Simulation of a QGP

Cross-over

We can also look at the particle multiplicity :

Multiplicity as a function of time for us and for PHSD. (Cassing, Phys. Rev. C78 (2008))

Effects of initial conditions

Effects of initial conditions

ε and v_2 as a function of b or N_{part} as compared to data (Hirano, J. Phys. G 35 (2008))

Rudy Marty

Simulation of a QGP

Effects of initial conditions

 v_2/ε as a function of *b* or N_{part} as compared to data (Holopainen, Phys. Rev. C83 (2011))

Effects of initial conditions

Formation of the v_2 as a function of time for similar event conditions in our approach and in PHSD. (Cassing, Phys. Rev. C78 (2008))

Conclusion

Conclusion

It is possible to use a transport theory based on an **effective model** with local interactions and local equilibrium in order to reproduce the main properties of the quark gluon plasma.

The role of the **confinement** in the phase transition was not so clear but now it is possible to say that we can describe the **mechanism of hadronization** without this one.

A secondary conclusion is that it is possible to describe a **fully** relativistic strongly interacting system within a code which perfectly conserves the energy.

Outlook

- Implement another improvement of the NJL model : the PNJL model (with Polyakov loop) which includes approximatively the confinement of color,
- Add new particles like vector mesons, baryons (to be able to compare results to experimental data), and new processes,
- Try to solve the problem of the few final free quarks
- ... and use different initial conditions (?),
- Improve the source code allowing to simulate bigger system (use parallelism on modern computer OpenCL),
- Extension to a true event generator which can predict observables.

Thanks for your attention

NJL equation of state

NJL masses

Rudy Marty

Simulation of a QGP

Checking local equilibrium

Rudy Marty

Simulation of a QGP

Energy conservation

Running time

Running time (in hours) and corresponding N_{part} as a function of b.

Relativistic collisions

Results

Initial conditions of the movie (b = 6.5 fm).

Rudy Marty

Simulation of a QGP

Results

 $\frac{\mathrm{d}^2 N}{\mathrm{d} \mathbf{p}_{\mathrm{T}}^2} \text{ as a function of } \mathbf{p}_{\mathrm{T}} \text{ as compared to data } (6 < b < 8 \text{ fm}).$ (Schenke, Phys. Rev. C82 (2010))

Results

Hadronization rate.

Rudy Marty

Results

Influence of L in the dynamics.