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1. The problem of hadron mass
2. How to embed nucleon and scalar fields?
3. Dilaton limit: consequences and implications

4. Polyakov loops and pure gluo-thermodynamics




. Main Objectives



Origin of hadron masses?

e spontaneous chiral symmetry breaking - - - dynamics of strong int., Aqcp
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e scale symmetry breaking (z# — e"xz#) - - - emergence of a scale in QCD
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e chiral SB and trace anomaly closely related — hadron masses
mp = F (CSB, non-CSB)

e baryons near CS restoration? --- dynamical origin of nucleon mass?

: : 0
— standard assignment: DySB generates entire masses. my =70

— mirror assignment: DySB generates mass difference of parity doublers.
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my, = % [\/610'2 + 4m% + coo| — My 7é 0 [Detar-Kunihiro (89)]



Role of scalar bosons in nuclear matter
e how to have empirical saturation in Walecka model? [eg., Serot-Walecka (97)]

L = N (Z& - gW/J — M + gS¢> N + £k1n+mass<w> + Lkin+mass(¢) _ ’%gbg _ )‘QJ)AI
— chiral symmetry: the signs and magnitudes of interactions
k= (m;—m2) /2, A= (mi—m2)/8f
— Lo M vyields no stable ground state! [Kerman-Miller (74)]  thus ¢ = o

e MF studies of nuclear matter and finite nuclei  [Heide-Rudaz-Ellis (92-93), Mishustin-
Bondorf-Rho (93), Furnstahl-Tang-Serot (95), Papazoglou et al. (97-99), .. ]

NM ground state requires an additional scalar other than
genuine chiral partner of pion.

e low density:
Walecka's ¢: a mixture of quarkonia, tetraquarks and glueballs

¢ higher density towards chiral restoration:
scalar meson gets lighter = O(4) multiplet with pions (7, s)

How does Walecka’s scalar transmute
into the 4th component of O(4) vector?



¢ gluon condensate vs. light quark mass

— Iow—energy theorem (q = U, d, S) [Novikov-Shifman-Vainstein-Zakharov (81)]
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— decomposition (“PCDC" hypOthESiS) [Miransky-Gsynin (89), Lee-Rho (09)]
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— from Lattice EoS: gluon decondensation at finite T [Miller (07)]
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— soft and hard dilatons
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—role of hard dilaton = origin of mg



Il. From Low Density to High Density



Role of scalar mesons: nonlinear vs linear

e combine chiral symmetry breaking and trace anomaly in a single theory

e non-linear chiral Lagrangian, chiral perturbation theory:
a minimal theory for NG bosons, reliable in low density

e from linear to non-linear basis, or the other way around

P — (@): chiral transformation

(1, 2, T3, 0) — (01,02, 03: fr)
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= (og+6)U, U=e T/

= L= fj%tr .U |

changeover of effective theories:
from NLSM (low T p) to LSM (around xSR)
what is/are constraint(s) from symmetries?



e transmutation of a scalar from NLSM to LSM  [Beane-van Kolck (94)]
1. non-linear chiral Lagrangian plus yg: U = &2 = e2im/ Fr VK= Fr/Fy,
U— LUR', ¢—veR" = Lewt, ¢ —wvh, x5 — xs
2. linearization: X = \/kUxs = s+iT- T & B = %[(54—{[) —%(ﬁ—fT)]w
“— LYR', B; — LB;, Bp— RBp
3.a LSM L(s, 7, B) emerges when k1 — 1 & g4 — 1 (dilaton limit).
Ling = (1= m)F(1/oEET) + (1 = g.)G(1/t[EET]) — 0

— higher dim. ops. suppressed by scale invariance
— emergent LSM renormalizable

dilaton limit chiral restoration
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e introduce vector mesons: (N, 7,p,w,X)  [CS-Lee-Paeng-Rho (2011)]
hidden local symmetry (HLS): U = &2 — fzﬁR [Bando et al. (85)]

— dilaton limit: kK =1 and g4 = gy (common to standard and mirror)

Ov
A

—gqa =gy = 1 as IR fixed point of RGEs 1
= DL unaffected by quantum loops!
[Paeng-Lee-Rho-CS (2011)]

0 1 >
— consequence: V' N repulsion suppressed gy = g (1 — gy) — 0
« softer EoSs at high density
+ suppression of n-body repulsion
via vector-meson exchanges

x short-range repulsion suppressed?
higher states V', V... KK modes in hQCD



Ground state of a skyrmion matter  [Park et al. (2002)]
e baryons as solitons generated from pions: skyrmions

e simulate dense matter: put skyrmions on a crystal lattice and squeeze them
= half-skyrmions appear at P1/2 > PO, each carries a half baryon charge
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what is it in continuum?



lessons from condensed matter physics  [Senthil et al., Science 303, 1490 (2004)]

e Néel magnet (A: broken spin rotation) and valence bond solid (VBS) para-
magnet (B: broken lattice rotation) %

e topology captured by C'P! model A
(7 = z132: skyrmion — half-skyrmions)

e Berry phase (VBS),
emergent gauge symmetry: U(1)

similar gauge structures expected in dense QCD!
e integrating out “fast” modes = induced gauge fields  [Shapere-Wilczek (89)]

e HLS: (F‘Q//F%,gv —ga) = (1,0) = L-R mixing only via gauge boson ex.

L x R “restored”, L ~ (Dqu)Q + (DMSR)Q,
whereas m
L X R




ll11. Pure Yang-Mills Thermodynamics and Polyakov Loops



“Confinement” in PNJL/PQM models???
e NJL/QM under a constant background Aq  [Meisinger-Ogilvie (96), Fukushima (03)]

Lyin = ¢q (Z@ - AO) g
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(®) ~ 0 at low T: 1- and 2-quark states thermodynamically irrelevant
= mimicking confinement

e NOTE!

— no confinement: only quarks existing at any T

— no baryons: 3\/p +M2 VS. \/p + (3My)?

e color confinement: pure SU(3) YM theory
cf. pure gauge sector of PNJL/PQM --- Q, = TU(D;T)
= no dynamical fields! where are gluons?

How does thermodynamics potential look like?
Gluon thermodynamics in low-T phase?



Z = /DAMDCDC exp [z’/d%ﬁ] , L =Ly, +Lar + Lyp
. employ background field method.  [Gross-Pisarski-Yaffe (81)]
Ay = Ay +gA,
. collect terms quadratic in quantum fields.
L2 = —%Ag [5abgaﬁaz — Fabe (aﬁAa»C + 29&5A;aﬂ)
+ facef pag® AL A 12 f, 40| Ay
. consider a constant uniform background Aj.
Al = AS6,0, Ag= AT + AT
. calculate propagator inverse and diagonalize it.

. from Minkowski to Euclidean space: carry out Matsubara summation.

Zln det (D_l) = Indet (1 — lA}Ae_m/T)



e Polyakov loop matrix in adjoint representation (8x8 matrix)
f/A = diag (1 1, o d1—02) 7 o~ (01=¢2) 7 o1 (201+62) 7 o~ 1(201+02) 7 o (d1+262) 7 e—i(¢1+2¢2))

rank of SU(3) group = 2 = elements expressed in 2 variables
e thermodynamic potential (gluon part)  [CS-Redlich (2012)]
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traced Polyakov loops ® = trLz/N,., ® = tri)}/Nc (gauge invariant)
full thermodynamics potential: {2 = (g + Qpaap

d*p !
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Uaor = —aoTIn [1— 600 + 4 (9° + &) —3(30)°) |
C, = Cr=1-900, 02:06:1_27@@+27(@3+®3) |
Cy = C5 = =24 270D — 81 (BD)”

Cy = 2 {—1+9<T><I> — 27 (9% + @%) +81 (cjxp)?]

= energy distributions solely determined by group characters of SU(3)



High and low temperature phases
e high temperature limit: ® — 1 = non-int. gluon gas

_ d3p
d 1) =T
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e any finite temperature in confined phase: ® = 0 thus {27,,, = 0

; d’p —IA/T
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wrong sign! = Gluons are NOT correct variables below 7!
cf. PNJL/PQM: approx. Qg ~ a(T)®® - - - unjustifiable near T,
e unchanged by quarks (7' < T,, ® ~ 0)

d’p —E,/T d’p —3E,/T
Qgig ~ 2T/<27T>31n(1+e g ) —4NfT/(27T>3ln(1+e a )

T? M 2N 3M,
~ e () -5 () - o

with effective masses: M, = Mgyupan/2, M, = Miucleon/3

e applications = talk by Pok Man Lo



Summary

e an effective chiral Lagrangian with scale invariance
dilaton limit = IR fixed point = intrinsic medium effects in couplings

e role of Polyakov loops in quasi-particle approaches
Polyakov loops = group character = gluons forbidden below T, (MF!)

e at which 7' or p does dilaton limit set in?
constraint from Danielewicz et al. (02), 1.97 M neutron star

e mixed scalar modes: quarkonium, tetraquarks, glueballs

e reliable estimate of m( in dense matter, thermodynamics
in-medium tensor forces, symmetry energy

e analysis of RG flows, a-theorem
e higher KK modes

e half-skyrmion phase, its EFT in continuum and emergent gauge
symmetry



