Nonequilibrium quark-pair and photon production

Hendrik van Hees

Frank Michler, Dennis Dietrich, Carsten Greiner, and Stefan Leupold

Goethe Universität Frankfurt

June 29, 2012

Outline

- Motivation: Chiral symmetry and quark-mass changes
- 2 Quark-pair creation in an Yukawa-background field
- $oldsymbol{3}$ Photon production in leading order in $lpha_e$
- 4 Conclusions
- 6 References

Motivation: Chiral symmetry and quark-mass changes

- approximate chiral symmetry of QCD (light-quark sector)
 - ullet spontaneously broken in the vacuum due to formation of $\langle ar q q
 angle
 eq 0$
 - ullet pions (+kaons): pseudo-Nambu-Goldstone bosons (massless in χ limit)
- at high temperatures and/or densities chiral-symmetry restoration
 - chiral-partner hadrons should become mass degenerate
 - expect large in-medium modifications of spectral properties
- electromagnetic probe in heavy-ion collisions
 - photons and dileptons nearly unaffected by FSI
 - provide undisturbed signal from hot and dense fireball
 - $M_{\ell^+\ell^-}$ spectra \Leftrightarrow medium modifications of light vector mesons
 - p_T spectra of real and virtual photons \Leftrightarrow collective flow/temperature
- time-dependent problem: nonequilibrium production of em. probes

Earlier Work

- Wang, Boyanovsky [WB01]: naive definition of transient photon numbers
- first-order processes (kinematically forbidden in equilibrium!)
 - allowed because of violation of energy at finite times
 - spontaneous pair annihilation, particle/antiparticle bremsstrahlung, pair+ γ production

- Boyanovsky, Vega [BV03]
 - ullet vacuum contribution to γ self-energy divergent; renormalization?!?
 - other contributions $\cong_{k\to\infty} 1/k^3$: γ number UV divergent
- Fraga, Gelis, Schiff [FGS05]
 - vacuum contribution unphysical; renormalization prescription criticized
 - no alternative ansatz
 - counter arguments by Boyanovsky and Vega [BV05]

Earlier Work

• Wang, Boyanovsky [WB01]: comparison to LO equilibrium processes

- ullet at large k non-equilibrium γ 's outshining thermal contributions
- spectra $\cong_{k\to\infty} 1/k^3$ vs. $\propto \exp(-k/T)$ for thermal contrib.
- but total photon number divergent

QED with external Yukawa field

- address toy model
 - start with Dirac (quark) field coupled to a Yukawa-background field
 - couple photon field minimally to quarks
 - keep basic principles: current conservation, em. gauge symmetry
- "matter" Lagrangian

$$\mathscr{L}^{(0)} = \overline{\psi}(i\partial \!\!\!/ - m - g\phi)\psi$$

- gauge phase symmetry $\Leftrightarrow U(1)_{em}$
 - add minimal gauge coupling $\partial_{\mu} \rightarrow \partial_{\mu} + iq \mathbf{A}_{\mu}$
 - kinetic term for photons $\mathcal{L}_{\gamma}^{(0)} = -\mathbf{F}_{\mu\nu}\mathbf{F}^{\mu\nu}/4$

$$\mathcal{L} = \mathcal{L}^{(0)} + \mathcal{L}^{(0)}_{\gamma} \underbrace{-\overline{\psi}q}_{\mathcal{L}_{\mathsf{int}}} \Psi$$

- make classical Yukawa field time dependent: $\phi = \phi(t)$
- invariant under $U(1)_{em}$ gauge symmetry

$$\psi(x) \to \exp[iq\chi(x)]\psi(x), \quad \overline{\psi}(x) \to \exp[-iq\chi(x)]\overline{\psi}(x),$$

 $\mathbf{A}_{\mu}(x) \to \mathbf{A}_{\mu}(x) - \partial_{\mu}\chi, \quad \phi(t) \to \phi(t)$

Mode decomposition

start with

$$\mathscr{L}^{(0)} = \overline{\psi}(x)[i\partial \!\!\!/ - m - g\phi(t)]\psi(x)$$

ullet equation of motion for field operators: free Dirac eq. with t-dep. mass

$$[i\partial - M(t)]\psi(t) = 0, \quad M(t) = m + g\phi(t)$$

spatial translation invariance ⇒ find momentum-eigenmodes:

$$\boldsymbol{\psi}(x) = \int \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^{3/2}} \sum_{\sigma = \pm 1/2} \exp(\mathrm{i}\vec{p} \cdot \vec{x}) [\mathbf{b}(\vec{p}, \sigma) u_{\vec{p}, \sigma}^{(+)}(t) + \mathbf{d}^{\dagger}(-\vec{p}, \sigma) u_{\vec{p}, \sigma}^{(-)}(t)]$$

mode functions

$$\begin{split} u_{\vec{p},\sigma}^{(\lambda)}(t) &= [\mathrm{i}\gamma^0\partial_t - \vec{\gamma}\cdot\vec{p} + M(t)]\chi_\sigma^{(\lambda)}\varphi_{\vec{p}}^{(\lambda)}(t),\\ \gamma^0\chi_\sigma^{(\lambda)} &= \lambda\chi_\sigma^{(\lambda)}, \quad \Sigma^3\chi_\sigma^{(\lambda)} = \sigma\chi_\sigma^{(\lambda)}, \quad \Sigma^3 = \frac{\mathrm{i}}{4}[\gamma^1,\gamma^2],\\ [-\partial_t^2 - \vec{p}^2 - M^2(t) + \mathrm{i}\lambda\dot{M}(t)]\varphi_{\vec{p}}^\lambda &= 0. \end{split}$$

Particle Interpretation?

investigate time-dependences of mass with

$$M(t) \mathop{\cong}_{t \to \pm \infty} M_{\pm} = \mathrm{const}$$

ullet define modes such that they allow particle interpretation for $t o \pm \infty$

$$\begin{split} & \varphi_{\mathsf{in},\vec{p}}^{(\lambda=1)}(t) \underset{t \to -\infty}{\cong} N_{\mathsf{in},\vec{p}} \exp[-\mathrm{i}\omega_{-}(\vec{p})t], \quad \omega_{-}(\vec{p}) = +\sqrt{M_{-}^{2} + \vec{p}^{2}} \\ & \varphi_{\mathsf{out},\vec{p}}^{(\lambda=1)}(t) \underset{t \to +\infty}{\cong} N_{\mathsf{out},\vec{p}} \exp[-\mathrm{i}\omega_{+}(\vec{p})t], \quad \omega_{+}(\vec{p}) = +\sqrt{M_{+}^{2} + \vec{p}^{2}} \\ & \varphi_{\mathsf{in}/\mathsf{out}}^{(\lambda=-1)}(t) := \varphi_{\mathsf{in}/\mathsf{out},\vec{p}}^{(\lambda=+1)*}(t), \quad |\Omega_{\mathsf{in}}\rangle \neq |\Omega_{\mathsf{out}}\rangle! \end{split}$$

- normalization of mode functions from equal-time anticommutators
- for $M(t) \neq \mathrm{const} \Rightarrow \varphi_{\mathrm{in},\vec{p}}^{(\lambda)} \neq \varphi_{\mathrm{out},\vec{p}}^{(\lambda)} \Rightarrow |\mathrm{vac_{in}}\rangle \neq |\mathrm{vac_{in}}\rangle$
- particle interpretation uniquely defined only for asymptotic states!
- in the following: $\mathbf{b}(\vec{p}, \sigma) = \mathbf{b}_{in}(\vec{p}, \sigma)$, $\mathbf{d}(\vec{p}, \sigma) = \mathbf{d}_{in}(\vec{p}, \sigma)$

Particle Interpretation at finite times?

- diagonalize time-dependent Hamiltonian
- Bogoliubov transformation to new creation and annihilation operators

$$\begin{pmatrix} \tilde{\mathbf{b}}(t,\vec{p},\sigma) \\ \tilde{\mathbf{d}}^{\dagger}(t,\vec{p},\sigma) \end{pmatrix} = \begin{pmatrix} \xi_{\vec{p},\sigma}(t) & \eta_{\vec{p},\sigma}(t) \\ -\eta_{\vec{p},\sigma}^*(t) & \xi_{\vec{p},\sigma}^*(t) \end{pmatrix} \begin{pmatrix} \mathbf{b}(\vec{p},\sigma) \\ \mathbf{d}^{\dagger}(\vec{p},\sigma) \end{pmatrix}, \\ |\xi_{\vec{p},\sigma}(t)|^2 + |\eta_{\vec{p},\sigma}(t)|^2 = 1$$

after normal ordering wrt. instantaneous vacuum

$$\begin{split} \mathbf{H}(t) &= \sum_{\sigma} \int \frac{\mathrm{d}^{3} \vec{p}}{(2\pi)^{3}} \omega_{\vec{p}}(t) \left[\tilde{\mathbf{b}}^{\dagger}(t, \vec{p}, s) \tilde{\mathbf{b}}(t, \vec{p}, s) + \tilde{\mathbf{d}}^{\dagger}(t, \vec{p}, s) \tilde{\mathbf{d}}(t, \vec{p}, s) \right], \\ \omega_{\vec{p}}(t) &= \sqrt{M^{2}(t) + \vec{p}^{2}} \end{split}$$

• instantaneous particle/antiparticle number operators

$$\mathbf{N}_{\vec{p},\sigma}(t) = \tilde{\mathbf{b}}(t,\vec{p},\sigma)\tilde{\mathbf{b}}^{\dagger}(t,\vec{p},\sigma), \quad \overline{\mathbf{N}}_{\vec{p},\sigma}(t) = \tilde{\mathbf{d}}^{\dagger}(t,\vec{p},\sigma)\tilde{\mathbf{d}}(t,\vec{p},\sigma)$$

Well-defined initial-value problem!

- give initial state ${f R}_0$ at $t o -\infty$; here vacuum: ${f R}_0 = \ket{\Omega_{\sf in}} ra{\Omega_{\sf in}}$
- calculate spectra for particles as

$$\frac{\mathrm{d}N_{\vec{p}}}{\mathrm{d}^{3}\vec{x}\mathrm{d}^{3}\vec{p}} = \sum_{\sigma} \left\langle \Omega_{\mathsf{in}} \left| \mathbf{N}_{\vec{p},\sigma}(t) \right| \Omega_{\mathsf{in}} \right\rangle = \frac{\mathrm{d}\overline{N}_{\vec{p}}}{\mathrm{d}^{3}\vec{x}\mathrm{d}^{3}\vec{p}} = \sum_{\sigma} \left| \eta_{\vec{p},\sigma}(t) \right|^{2}$$

Mass-switching functions

June 29, 2012

Asymptotic pair spectra

• asymptotic spectra $(t \to \infty)$

ullet behavior for $p o \infty$:

$$\propto (m_c - m_b)^2/|\vec{p}|^2$$
, $\propto 1/|\vec{p}|^6$, $\propto \exp(-p/T_{\text{eff}})$

Time dependence of spectra

- ullet large overshoot at times with large variations in M(t)
- reason:

$$\eta_{\vec{p},\sigma}(t) \underset{|\vec{p}| \gg m(t)}{\cong} \frac{\exp(-\mathrm{i}|\vec{p}|t)}{2|\vec{p}|^2} \int_{-\infty}^{t} \mathrm{d}t' \dot{M}(t') \exp(2\mathrm{i}|\vec{p}|t')$$

well-behaved UV limit only for asymptotic spectra

Time dependence of spectra

- for finite t: spectra $\cong_{|\vec{p}| \to \infty} 1/|\vec{p}|^4$
- ullet asymptotic spectrum exponential for large $|ec{p}|$
- total energy density divergent for finite t!
- artifact of Yukawa background field independent of \vec{x} ?

Probable way out?

- problems with definition of transient particle numbers
 - instantaneous single-particle energy-eigenmodes:
 no clear definition of "positive frequency solutions"
 - particle interpretation of those modes ambiguous
- possible well-defined "particle models" $0 \ t \neq \pm \infty$:
 - adiabatic solutions to the mode function

$$\varphi_{\vec{p}}^+(t) = \frac{1}{\sqrt{2w(t)}} \exp\left[-i \int_{t_0}^t dt' w(t')\right]$$

- ullet w(t) given in WKB approximations of mode equation
- positive definite $w(t) \Rightarrow \varphi_{\vec{p}}^{(+)} =$ "positive frequency solutions"
- usually well behaved finite particle densities [Ful79, Ful89]
- admit proper particle definition (but not unique!)
- asymptotic particle interpretation unique!
- WKB semiclassical approximations
- "transient" particle interpretations approximately equivalent
- transient particle spectra/yields good under "transport conditions"

Perturbation theory for em. interaction

- treat photon production perturbatively
 - ullet use quark fields from $\mathscr{L}^{(0)}$
 - J-interaction picture includes exact dynamics from $\phi(t)$ (all orders in g)
 - photon field operators: free-field evolution in J-interaction picture
- to get correct asymptotic limit
 - adiabatic switching a la Gell-Mann-Low theorem crucial
 - $\mathbf{H}_{\text{int}} \to \exp(-\epsilon |t|) \mathbf{H}_{\text{int}} \left[\mathbf{H}_{\text{int}} = q \int d^3 \vec{x} \overline{\psi}(x) \mathbf{A}(x) \psi(x) \right]$
 - $oldsymbol{\mathrm{U}}_{\epsilon}(t_1,t_2)$: interaction-picture time evolution for states

$$|\Omega_{\mathsf{out}}\rangle = \lim_{\epsilon \to 0} \lim_{t \to \infty} \frac{\mathbf{U}_{\epsilon}(-\infty, t) |\Omega_{\mathsf{in}}\rangle}{\langle \Omega_{\mathsf{in}} | \mathbf{U}_{\epsilon}(-\infty, t) |\Omega_{\mathsf{in}}\rangle}$$

- order of limits crucial: first $t \to \infty$ and then $\epsilon \to 0$
- projects to vacuum state
- damping out transient contributions from higher states
- only applicable for asymptotic observables (S-matrix prescription)
 - advantage: perturbation theory applicable in NEqQFT
 - disadvantage: no transient photon numbers but only asymptotic!
 - definition for γ numbers for interacting γ fields???

Photon production in leading order in α_e

- asymptotic photon-production yield
- photon polarization in terms of Schwinger-Keldysh real-time diagrams
- turns out to be absolute square

$$(2\pi)^{3} |\vec{k}| \frac{\mathrm{d}n_{\gamma}}{\mathrm{d}^{4}x \mathrm{d}^{3}\vec{k}} = -\operatorname{Im} \left\{ \int_{-\infty}^{\infty} \overline{\mathrm{d}t_{1}} \int_{-\infty}^{\infty} \overline{\mathrm{d}t_{2}} \, \Pi_{\perp}^{<}(\vec{k}, t_{1}, t_{2}) \right.$$
$$\times \exp\left[i|\vec{k}|(t_{1} - t_{2})\right] \right\},$$

- $\overline{\mathrm{d}t} := \mathrm{d}t \exp(-\epsilon |t|)$ with limit $\epsilon \to 0^+$ after all time integrations!
- photon-polarization tensor

$$i\Pi_{\mu\nu}^{<}(\vec{k},t_1,t_2) = \underbrace{\vec{k}}_{+}$$

quark propagators: full time evolution from external Yukawa field!

- spectra=modulus squared ⇒ positive photon number
- all pure vacuum contributions vanish for asymptotic spectra
- ullet one-loop $\Pi^{<}$ convergent (except for instantaneous switching!)
- instantaneous switching
 - loop integral divergent (here cut-off regulated with $\Lambda=100~{\rm GeV})$
 - \bullet asymptotic photon spectrum $\cong_{|\vec{k}| \to \infty} 1/|\vec{k}|^3$
 - total photon number and energy UV divergent
- once-differentiable switching function
 - ullet loop integral convergent (here: extrapolated spectrum for $\Lambda o \infty$)
 - asymptotic photon spectrum $\cong_{|\vec{k}| \to \infty} 1/|\vec{k}|^6$
 - total photon number and energy UV convergent
- Smooth switching function
 - ullet loop integral convergent (here: extrapolated spectrum for $\Lambda o \infty$)
 - asymptotic photon spectrum $\cong_{|\vec{k}| \to \infty} \exp(-|\vec{k}|/T_{\text{eff}})$
 - total photon number and energy UV convergent

dependence on switching duration

dependence on switching duration

Transient photon spectra?

- naive attempt: keep time-integration limit finite
- keep only non-vacuum contributions (ad-hoc renormalization)

- spectra at finite t many orders of magnitude above asymptotic limit
- ill-defined transient photon numbers
- no sensible physical interpretation! of naive rates
- interchanging orders of limits $t \to \infty$ and $\epsilon \to 0 \Rightarrow$ forbidden!

Transient photon spectra?

- naive attempt: keep time-integration limit finite
- keep only non-vacuum contributions (ad-hoc renormalization)

- spectra at finite t many orders of magnitude above asymptotic limit
- ill-defined transient photon numbers
- no sensible physical interpretation! of naive rates
- interchanging orders of limits $t \to \infty$ and $\epsilon \to 0 \Rightarrow$ forbidden!

Conclusions

- ullet spontaneous $q\overline{q}$ -pair creation in time-dep. Yukawa background
 - simplified model for transient effect of chiral phase transition $m_{\rm const} \to m_{\rm curr}$
 - definition of transient particle numbers non-trivial
 - naive interpretation wrt. instant energy eigenmodes unphysical
 - probably cured by using particle interpretations wrt. adiabatic modes
 - asymptotic particle yields well defined
- Nonequilibrium photon radiation
 - well-defined perturbation theory for asymptotic photon numbers
 - contributions to $\mathcal{O}\alpha_{em}$ (kinematically forbidden in equil.)
 - LO neq. asymptotic photon yield convergent (except for instantaneous mass shift)
 - naively defined transient photon spectra ill-defined

Outlook

- straight-forward extension: asymptotic non-eq. dilepton spectra
- Challenges
 - what about IR divergences (soft photons, LPM effect)?
 - physically sensible definition of transient photon numbers?
 - relation to quantum-kinetic/transport picture/equations?
 - self-consistent electromagnetic mean field ("back-reaction problem")?
 - Noneq. photon (dilepton) asymptotic spectra in realistic HIC fireball?

BACKUP SLIDES

Normalization of fermion-mode functions

equal-time anticommutators

$$\left\{\boldsymbol{\psi}_{\alpha}(t,\vec{x}),\boldsymbol{\psi}_{\beta}^{\dagger}(t,\vec{y})\right\} = \delta_{\alpha\beta}\delta^{(3)}(\vec{x}-\vec{y})$$

• fulfilled if $\mathbf{b}(\vec{p}, \sigma)$, $\mathbf{d}(\vec{p}, \sigma)$ like usual fermionic annihilation operators

$$u_{\vec{p},\sigma}^{(\lambda)\dagger}u_{\vec{p},\sigma'}^{(\lambda')} = \delta_{\sigma\sigma'}\delta_{\lambda\lambda'}$$

with ansatz

$$u_{\vec{p},\sigma}^{(\lambda)}(t) = [\mathrm{i} \gamma^0 \partial_t - \vec{\gamma} \cdot \vec{p} + M(t)] \varphi_{\vec{p}}^{(\lambda)}(t) \chi_\sigma^{(\lambda)}$$

fulfilled with $\varphi_{\vec{p}}^{(\lambda=1)}=\varphi_{\vec{p}}^{(\lambda=1)*}=:\varphi_{\vec{p}}(t)$ if

$$|\dot{\varphi}_{\vec{p}}|^2 + \mathrm{i} m \varphi_{\vec{p}}^* \overleftrightarrow{\partial}_t \varphi_{\vec{p}} + \omega_{\vec{p}}^2(t) |\varphi_{\vec{p}}|^2 \equiv 1, \quad \omega_{\vec{p}}^2(t) = M^2(t) + \vec{p}^2$$

- Ihs time-independent due to EoM for φ (charge conservation!)
- can express normalization factors in terms of asymptotic frequencies:

$$N_{\mathsf{in/out},\vec{p}}^{(\lambda)} = \frac{1}{\sqrt{2\omega_{\pm}(\omega_{\pm} + \lambda M_{\pm})}}$$

Bibliography I

- [BV03] D. Boyanovsky, H. de Vega, Are direct photons a clean signal of a thermalized quark gluon plasma?, Phys. Rev. D 68 (2003) 065018.
- [BV05] D. Boyanovsky, H. J. de Vega, Photon production from a thermalized quark gluon plasma: Quantum kinetics and nonperturbative aspects, Nucl. Phys. A 747 (2005) 564.
- [FGS05] E. Fraga, F. Gelis, D. Schiff, Remarks on transient photon production in heavy ion collisions, Phys. Rev. D 71 (2005) 085015.
- [Ful79] S. Fulling, Remarks on positive frequency and hamiltonians in expanding universes, Gen. Rel. Grav. **10** (1979) 807.

Bibliography II

- [Ful89] S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time, Cambridge University Press, Cambridge, Port Chester, Melbourne, Sydney (1989).
- [WB01] S.-Y. Wang, D. Boyanovsky, Enhanced photon production from quark - gluon plasma: Finite lifetime effect, Phys. Rev. D 63 (2001) 051702.