Do women get fewer citations than men?

Sabine Hossenfelder

In collaboration with Tobias Mistele and Tom Price.

Views expressed in this talk do not reflect or represent FIAS, FQXi, or the DFG.
The brief answer...

... is “yes.”

But hear me out before jumping to conclusions.
How did I ever get into this?

I am an ex-particle-physicist with an interest in bibliometric analysis.

I have recently done a few studies using data from the arXiv open access server. For example, we trained a neural net to predict citation counts. That was fun. We want to offer this prediction online in the soon future (more about this later).
Then this happened
Then this happened

Cern scientist: 'Physics built by men - not by invitation'

By Pallab Ghosh
Science correspondent, BBC News
Then this happened

Cern scientist: 'Physics built by men - not by invitation'

By Pallab Ghosh
Science correspondent, BBC News

1 October 2018

CERN has condemned a talk given by an Italian particle physicist.
(Courtesy: Maxime Birse/CERN)

Alessandro Strumia claimed "physics invented and built by men"
Then this happened

'Cern

'Physics was built by men': Cern suspends scientist over remarks

Italian professor’s presentation deemed ‘unacceptable’ by Geneva research centre
Then this happened
Then this happened

 Thousands of physicists sign letter condemning ‘disgraceful’ Alessandro Strumia gender talk
08 Oct 2018 Michael Banks

PHYSICIST WHO CLAIMED ‘PHYSICS WAS INVENTED BY MEN’ SUSPENDED BY CERN WITH IMMEDIATE EFFECT

od up in front of a room of early career women and delivered a manifesto on why women didn’t belong in physics’

a Barr | @fabsab5 Tuesday 2 October 2018 09:50 | 5 comments

Physicist who came under fire for claiming that physics was “invented and built by men” while giving a talk at a European Organisation for Nuclear Research (Cern) workshop in Geneva has been ended from the organisation with immediate effect.

Professor Alessandro Strumia, a senior researcher at the National Institute of Chemical Physics and physics, had allegedly asked Cern if he could deliver a talk on his most recent bibliometrics.

Alessandro Strumia claimed “physics invented and built by men”
The Strumia talk

I did not attend the talk. I have only seen slides.

The slides are unprofessional and unnecessarily offensive.

Still, his point that papers with female authors are systematically less cited in high energy physics warrants attention.

And I had my hands on the data anyway.
Claim: Women get cited less than men

x-axis shows time since first paper on Inspire (people to the right are older)

y-axis shows cumulative citations normalized to number of authors

That’s a HUGE difference!
Can we reproduce this finding?

We previously used a different data set.

Rather than using the Inspire data base, we used the arXiv data plus citation data from Paperscape.

What are the main differences?
- Open access server
- In operation since 1994
- We use the “physics” set only.
- Dominated by hep, astro-ph, and cond-mat
- Papers up to April 2018

Citation data from Paperscape: In-arXiv references only. Coverage reaching more than 80% for the “early” fields, but less than 10% for “late” fields. Data up to December 2017.
Inspire

- Formerly SPIRES.
- Digital library/content management system.
- About 1.1 mio papers dating back to the early 20th century
- Only particle physics and closely related disciplines

Since the number of publications increases exponentially and the arXiv is dominated by the fields that are covered by Inspire, most papers in either database have a corresponding entry in the other database. I.e., results from analyzing one of those databases, while not quantitatively identically, should be comparable with the other.
Gender-identification

- We use a publicly available list of international first names (the same list as Strumia et al)
- We match names to author names using the algorithm described in our earlier paper, arXiv:1805.04647 [physics.soc-ph].
- Authors whose name are ambiguous (Simone, Andrea, Stacy, etc) are marked as not identified and are removed from the sample.
- We did at this point not attempt to further improve on this algorithm by using affiliations or email addresses.
Gender-identification check

We tested our gender-id algorithm using lists of participants of the recent Boston Marathons (2015/2016/2017). Ca 80,000 international participants with (self-supplied) male/female identification.
How good is our gender-identification?

Misidentification about 1% for men and 2% for women.

Gender-identification is somewhat more likely to fail for women than for men, meaning that in the following total numbers slightly underestimate the true fraction of women.
Taking into account the leaky pipe

In the following, we remove “inactive” researchers, which are researchers who have not published a paper past 01-01-2015 or have fewer than 5 papers in total.

This is to avoid that the higher rate of dropouts among women pulls down the female average.
1st Try: Repeat analysis with ArXiv data

Note: The shape of the curve differs from the Inspire curve b/c the arXiv curve also integrates over the growth of the arXiv itself.
2nd Try: Repeat analysis with Inspire data

Note: Data from papers older than 40 years very noisy due to small sample.
The results are now largely comparable:

The (current) male/female ratio is about 1.5 both for the arXiv and Inspire.
The results are now largely comparable:

The (current) male/female ratio is about 1.5 both for the arXiv and Inspire.
Where did the huge difference go?

The gender-difference is most pronounced around the (current) scientific age of 50 (larger than 2), which the arXiv data does not contain. Even the biggest arXiv-difference is lower (about 1.5).

Using arXiv data only underestimates the “scientific age” for people whose first paper predates the arXiv. Correcting this increases the difference.

Reason: The gender-difference happens to be small in the years directly before the arXiv launched, and these are the most populated years. (Why was the difference small at the time? We have no idea.)
So: The gender-difference exists and is robust

- A difference in the citations to male and female authors is clearly present both in the arXiv and in the Inspire data.
- The difference is significantly larger than the estimated error from the gender-identification.
- The difference remains up to 2017. It is not an “old-age” effect.
Where does the difference come from?

Normalizing the number of citations to the number of authors is not a commonly used measure.

Advantage: For small collaborations, it is a better first approximation to the actual work that each author did (and hence credit they should get).

Disadvantage: Makes it difficult to tell the origin of the gender-difference.

Citation analyses for members of large collaborations is meaningless because in this case individual contributions cannot be extracted from authorship. For this reason, large collaborations are normally excluded from citation analyses. Normalizing the number of citations by the number of authors makes such papers irrelevant, so that further explicitly removing them does not change much.
The total number of citations is comparable.
Do women collaborate more frequently?

Normalizing the number of citations (N_{cit}) to the number of authors (N_{aut}) has the effect of making single-authored papers most relevant.

The total number of citations to all single-authored papers however also depends on the number of single authored papers (duh).

This brings up the question: Does the difference come from the frequency by which women and men publish single authored papers?
Who collaborates how much?

Women publish (relatively) fewer single-authored papers than men and work more in small collaborations.

This explains part of the difference in $\frac{N_{\text{cit}}}{N_{\text{aut}}}$.

Top: Inspire, Bottom: ArXiv
The number of citations to individual single-authored papers by women is also smaller than that to single-authored papers by men.

(Figure: arXiv data with Inspire age.)
Where do the citations come from?

Count single-author that cites different single-author, define

\[
G \equiv \frac{1}{N_{cit}^M \times N_{cit}^F} \det \begin{pmatrix} N_{cit}^M \rightarrow M \\ N_{cit}^F \rightarrow M \\ N_{cit}^M \rightarrow F \\ N_{cit}^F \rightarrow F \end{pmatrix} \quad -1 \leq G \leq 1
\]

\[\begin{array}{|c|c|} \hline \text{category} & A \\hline \text{hep-ex} & (-1.2 \pm 1.7)\% \\hline \text{hep-ph} & (0.1 \pm 0.6)\% \\hline \text{hep-th} & (-0.1 \pm 0.7)\% \\hline \text{astro-ph} & (0.6 \pm 1.1)\% \\hline \text{hep-lat} & (0.2 \pm 2.2)\% \\hline \text{nucl-ex} & (0.2 \pm 2.1)\% \\hline \text{gr-qc} & (0.2 \pm 1.2)\% \\hline \end{array}\]

No gender preference in citations in any category at any time, down to \% level.

Credits: Alessandro Strumia
We can reproduce this* if we exclude self-citations.
Fun fact: Men cite themselves more often
Fun fact: Men cite themselves more often

Inspire data
What do the self-citations do?

Including self-citations significantly increases the gender-asymmetry.

Self-citations however have a negligible effect on the $N_{\text{cit}}/N_{\text{aut}}$ ratio.
But what does this asymmetry mean?

Unclear what it means that deviations of determinant from zero are below percent level. Is this small? Is this large?

To obtain a more meaningful comparison:

Look at fraction of citations given to men/women relative to “random pick”: Divide ratio of citations from M/F to M/F (notated $f_{M\rightarrow M}$ etc) to fraction of M/F papers in the pool of all citable papers (p_M or p_F).
Who cites whom?
What does this mean?

- Men and women both cite men roughly with the frequency that one would expect from a gender-mixture.
- Men cite women consistently less than a gender-mixture would suggest.
- Women used to cite women less, but in the past 20 years or so have taken on to citing women roughly at the “gender-mixed” level. (Note though that fluctuations are large, so the trend may be spurious.)
This difference is not large but...

... it has a large effect on the citations to female papers because there are so many more men than women.
To recapitulate:

The ratio $N_{\text{cit}} / N_{\text{aut}}$ is dominated by the total number of citations to single-authored papers. It is smaller for women notably because:

a) Women write relatively fewer single-authored papers than men.

b) Women’s single-authored papers are cited less than single-authored papers by men.

Citations to women’s single-authored papers are less than those to men’s papers because men cite women less. This has a large impact because there are so many more men than women.
Interpretation?

We cannot “blind” author names on papers that were published and cited in the past.

Bibliometric analyses therefore can neither reveal biases against women nor prove that such biases do not exist. It documents what researchers do in their publications, but does not tell us why they do what they do.
What can bibliography do for science?

Scientists presently use over-simplified measures: the h-index, total number of citations, the journal impact factor – and little else.

This:

- leads to perverse incentives
- makes those measures susceptible to gaming and eventually useless
- streamlines research practices/reduces diversity
We know we shouldn’t use those measures…

... but do it anyway. That’s because scientists and HE admin likewise need ways to measure scientific impact quickly and easily.

Of course such measures can not replace a qualitative, in-depth assessment. But they are necessary and this need will not go away.

Even the computation of simple measures like the ones I discussed here is prohibitively time-consuming for individual scientists or university personnel.
If you measure, measure right

SciMeter.org: A web-interface for research evaluation that is

- **Customizable and adaptive**
 Define your own measure for research impact

- **Transparent and reproducible**
 Both data and algorithms are documented

- **For Scientists, not against them**
 Designed to help scientists make fast assessments
That’s it. Thanks for listening.