Constructing a selection function first, rank the latent variables according to the affinity computed in Eq. (4) to output the H* most relevant latent states \(\mathbf{K}_0 \) for the data point \(\mathbf{y}^{(n)} \).

GP-select: Learn affinity with GP regression

Algorithm

For EM iterations \(t = 1, \ldots, T \) do

1. Compute affinity of all latent variables \(\mathbf{p}^{(t)} \): (5)
2. Compute truncated posterior \(\mathbf{q}^{(t)}(\mathbf{s}) \), E-step: (2)
3. Update model parameters in M-step
4. Store \(\mathbf{p}^{(t)} \) for \(\mathbf{p}^{(t)} \) in EM iteration \(t + 1 \)
5. End for

Experiments

Sparse coding models

<table>
<thead>
<tr>
<th>Binary SC</th>
<th>Spike & Slab SC</th>
<th>Nonlinear Spike & Slab SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s \sim \mathcal{N}(0, \delta^2))</td>
<td>(s \sim \mathcal{N}(0, \mu, \Sigma))</td>
<td>(s \sim \mathcal{N}(0, \delta^2))</td>
</tr>
<tr>
<td>(y \sim \mathcal{N}(\mathbf{y}</td>
<td>\mathbf{h}, \mathbf{r}^2))</td>
<td>observations</td>
</tr>
</tbody>
</table>

Data: \(N = 2, 000 \) with \(D = 5 \) x 5 obs dims & \(H = 10 \) latent dims/bars gen. by each model, with GP-select to preselect \(H^* = 5 \) dims

Show: final EM fit; GP-select converges to GT params, \(W_{GP-select} \)

Gaussian mixture model

Data: \(C = 3 \) clusters, GP-select to preselect \(C^* = 2 \) clusters

Show: using the wrong selection function can do harm (i.e. miss patterns); sel. funcs need to be flexible and possibly nonlinear

Translation invariant occlusive models [1]

Problem: locate objects in scene (A), with massive latent space complexity \# of obj. locations exponentiated by \# of objects.

Speed: partial incomplete Cholesky approx to for faster GP regression computation, update GP hyperparams every 5 EM its

Show: all 3 variants of GP-selection learn all objects (B) with accuracy equivalent to hand-crafted selection (C & D)